WIRELESS COMMUNICATIONS

Lecture slides for courses based on the textbook by A. F. Molisch

Wireless
 Communications

Ove Edfors, Andreas F. Molisch, and Fredrik Tufvesson

Textbook

Wireless
 Communications

Slides for "Wireless Communications" © Edfors, Molisch, Tufvesson

Chapter 1

Introduction

Contents

- What are radio systems?
- History of wireless systems
- Classifications
- Requirements for services
- Social and economic aspects

WHAT IS A RADIO SYSTEM?

Radio system?

- From Merriam-Webster Dictionary
- Radio:

1 : of, relating to, or operated by radiant energy
2 : of or relating to electric currents or phenomena (as electromagnetic radiation) of frequencies between about 15 kHz and 100 GHz

- System:

1 : a regularly interacting or interdependent group of items forming a unified whole

- "Radio systems" can be used for many purposes, e.g.
- Detection and ranging (Radar)
- Astronomical observation (Radio telescope)
- Heating food (Microwave oven)
- Navigation (GPS, etc.)
- Communication (Cellular telephony, etc.)

Some questions to ask

- What do we want to achieve with our system?
- This gives us design constraints (system requirements)
- What frequency band should we use?
- Properties of the radio channel changes with frequency
- Radio spectrum is firmly regulated
- Which technology should we use?
- Not all technologies can perform the task
- Cost is important (design, production, deployment, etc.)

Example: Mobile telephony

Amplifiers with low dynamic range can be made more power efficient than highly linear amplifiers.

Does this affect the choice of modulation technique?

A rough breakdown into areas

HISTORY OF WIRELESS

History of wireless (1)

- Maxwell: theory
- Hertz: fundamental experiments confirming Maxwell's theory
- 1890-1905: First experiments for wireless information transmission
- Tesla, Bose, Marconi
- 1905-1946: First systems:
- 1947/1948: fundamental information theory

History of wireless (2)

- Development of cellular telephony: 1950s - 1980s
- Cellular systems
- GSM (Global System for Mobile communications)
- First deployment in early 1990s in Europe
- In 2005, more than 1 billion users
- IS-95 (cdmaOne)
- Second-generation system based on different multiple-access scheme
- Used mainly in US and Korea
- PDC (Pacific Digital Cellular)
- Third-generation systems
- Several different standards
- All based on CDMA
- After initial goldrush, now more sedate development

New wireless systems

- Fixed wireless access:
- for wireless internet
- Not successful in 1990s
- In recent years, WiMax was developed, seems more promising
- Cordless phones:
- DECT: in Europe and most of the world
- PHS: in Japan
- CDMA-based: in US
- Wireless LANs
- Wireless computer networks
- WiFi
- Personal Area Networks

TYPES OF SERVICES

Broadcast

BROADCAST

Paging

Cellular phones

Cordless phones

CORDLESS PHONE

WIRELESS PABX

Wireless LANs and PANs

AD-HOC NETWORK

Fixed wireless and satellite

- Fixed wireless systems
- Long distances between BS and MS
- No mobility requirements
- Typically high data rates, but can also be used for voice systems
- WiMax standard (IEEE 802.16)
- Satellite systems
- Cover very large area
- No high density (Erlang/km^2)
- Iridium system with LEO systems tried to get large user density, but went broke

REQUIREMENTS FOR SERVICES

Data rate

- Sensor networks: <1kbit/s; central nodes need up to 10 Mbit/s
- Speech communications: 5-64 kbit/s, depending in speech coder (vocoder)
- Elementary data services: 10-100 kbit/s
- Communications between computer peripherals: $1 \mathrm{Mbit} / \mathrm{s}$
- Wireless LANs: broadband internet speeds, 1-100 Mbit/s
- Personal Area Networks: >100 Mbit/s

Tradeoff range vs. datarate

Mobility

- Fixed devices: stay in one location; temporal variations due to moving objects in surroundings
- Nomadic devices: MS placed at certain location, stays there for a while (WLANs)
- Low mobility: pedestrian speeds (cordless phones)
- High speed: cellphones in cars
- Extremely high speed: high-speed trains, planes,

Spectrum usage

- Spectrum dedicated to specific service and operator
- Spectrum dedicated to specific service
- Free spectrum

ECONOMIC AND SOCIAL IMPACT

Economic requirements

- Systems where mobility is a value by itself
- Cellphones, etc.
- Can charge premium for service
- Systems that just are cable replacement
- E.g., for fixed wireless access
- Must be cheaper than cabled service
- In either case, quality has to be same than wired
- Systems should contain as many digital components as possible to reduce costs

Behavioral impact

- Communications are now with a person, not with a location
- Allows more flexibility for private/business life, but can also become electronic "ball and chain"
- Cellphone etiquette: generally underdeveloped
- Phoning while driving is dangerous
- Each cellphone has an OFF button

Chapter 2

Technical challenges of wireless communications

The major challenges

- Multipath propagation
- Spectrum limitations
- Limited energy
- User mobility

Multipath propagation

Slides for "Wireless Communications" © Edfors, Molisch, Tufvesson

Small-scale fading

Large-scale fading

Consequences of fading

- Error probability is dominated by probability of being in a fading dip
- Error probability decreases only linearly with increasing SNR
- Fighting the effects of fading becomes essential for wireless transceiver design
- Deterministic modeling of channel at each point very difficult
- Statistical modeling of propagation and system behavior

Intersymbol interference (1)

- Channel impulse response is delay-dispersive
Path 3 Path 1

Intersymbol interference (2)

Spectrum assignment

- $<100 \mathrm{MHz}$: CB radio, pagers, and analogue cordless phones.
- 100-800 MHz: broadcast (radio and TV)
- 400-500 MHz: cellular and trunking radio systems
- 800-1000 MHz: cellular systems (analogue and secondgeneration digital); emergency communications
- $1.8-2.0 \mathrm{GHz}$: main frequency band for cellular and cordless
- 2.4-2.5 GHz: cordless phones, wireless LANs and wireless PANs (personal area networks); other devices, e.g., microwave ovens.
- 3.3-3.8 GHz: fixed wireless access systems
- $4.8-5.8 \mathrm{GHz}$: wireless LANs
- 11-15 GHz: satellite TV

Frequency reuse

- Available spectrum is limited
- -> the same frequency (range) has to be used at many different locations
- Regulated spectrum:
- a single operator owns the spectrum, and can determine where to put TXs
- cell planning so that interference adheres to certain limits
- Unregulated spectrum:
- Often only one type of service allowed,
- Nobody can control location of interferers
- Power of interferers is limited by regulations

Duplexing and multiple access

- Within each frequency band, multiple users need to communicate with one BS (multiple access)

Mobile telephony, wireless LAN, ...

- Cellphones have to be able to transmit and receive voice communications (duplexing)

DUPLEX Frequency-division Duplex (FDD)

FDD gives a more complex solution (the duplex filter).

Can be used for continuous transmission.

Examples: Nodic Mobile Telephony (NMT), Global System for Mobile communications (GSM), Wideband CDMA (WCDMA)

DUPLEX Time-division duplex (TDD)

TDD gives a low complexity solution (the duplex switch).

Cannot be used for continuous transmission.

Examples: Global System for Mobile communications (GSM), Wideband CDMA (WCDMA)

MULTIPLE ACCESS Freq.-division multiple access (FDMA)

> Users are separated in frequency bands.

Examples: Nordic Mobile Telephony (NMT), Advanced Mobile Phone System (AMPS)

MULTIPLE ACCESS Time-division multiple access (TDMA)

Example: Global System for Mobile communications (GSM)

MULTIPLE ACCESS Code-division multiple access (CDMA)

MULTIPLE ACCESS Carrier-sense multiple access (CSMA)

Users are separated in time but not in an organized way.
The terminal listens to the channel, and transmits a packet if it's free.

User mobility

- User can change position
- Mobility within one cell (i.e., maintaining a link to a certain BS): mostly effect on propagation channel (fading)
- Mobility from cell to cell:

Chapter 3

Noise- and interference limited systems

Basics of link budgets

- Link budgets show how different components and propagation processes influence the available SNR
- Link budgets can be used to compute, e.g., required transmit power, possible range of a system, or required receiver sensitivity
- Link budgets can be most easily set up using logarithmic power units (dB)

SINGLE LINK The link budget - a central concept

dB in general

When we convert a measure X into decibel scale, we always divide by a reference value $\mathrm{X}_{\text {ref }}$:

The corresponding dB value is calculated as:

$$
\left.X\right|_{d B}=10 \log \left(\frac{\left.X\right|_{n o n-d B}}{\left.X_{r e f}\right|_{n o n-d B}}\right)
$$

Power

We usually measure power in Watt (W) and milliWatt [mW] The corresponding dB notations are dB and dBm

Non-dB

Example: Power

Sensitivity level of GSM RX: $6.3 \times 10^{-14} \mathrm{~W}=-132 \mathrm{~dB}$ or -102 dBm
Bluetooth TX: $10 \mathrm{~mW}=-20 \mathrm{~dB}$ or 10 dBm
GSM mobile TX: $1 \mathrm{~W}=0 \mathrm{~dB}$ or 30 dBm
GSM base station TX: $40 \mathrm{~W}=16 \mathrm{~dB}$ or 46 dBm
Vacuum cleaner: $1600 \mathrm{~W}=32 \mathrm{~dB}$ or 62 dBm
Car engine: $100 \mathrm{~kW}=50 \mathrm{~dB}$ or 80 dBm
TV transmitter (Hörby, SVT2): 1000 kW ERP = 60 dB or 90 dBm ERP
Nuclear powerplant (Barsebäck): 1200 MW = 91 dB or 121 dBm

Amplification and attenuation

(Power) Amplification:

The amplification is already dimension-less and can be converted directly to dB :

$$
\left.G\right|_{d B}=10 \log _{10} G
$$

(Power) Attenuation:

The attenuation is already dimension-less and can be converted directly to dB :

$$
\left.L\right|_{d B}=10 \log _{10} L
$$

Example: Amplification and attenuation

The total amplification of the (simplified) receiver chain (between A and B) is

$$
\left.G_{A, B}\right|_{d B}=30-4+10+10=46
$$

Noise sources

The noise situation in a receiver depends on several noise sources

Man-made noise

Copyright: IEEE
Slides for "Wireless Communications" © Edfors, Molisch, Tufvesson

Receiver noise: Equivalent noise source

To simplify the situation, we replace all noise sources with a single equivalent noise source.

Same "input quality", signal-to-noise ratio, C / N in the whole chain.

Receiver noise: Noise sources (1)

The power spectral density of a noise source is usually given in one of the following three ways:

1) Directly $[\mathrm{W} / \mathrm{Hz}]$:
2) Noise temperature [Kelvin]:
3) Noise factor [1]:

The relation between the tree is

$$
N_{s}=k T_{s}=k F_{s} T_{0}
$$

where k is Boltzmann's constant $\left(1.38 \times 10^{-23} \mathrm{~W} / \mathrm{Hz}\right)$ and T_{0} is the, so called, room temperature of $290 \mathrm{~K}\left(17^{\circ} \mathrm{C}\right)$.

Receiver noise: Noise sources (2)

Antenna example

Noise temperature of antenna 1600 K

Noise free antenna

Power spectral density of antenna noise is

$$
N_{a}=1.38 \times 10^{-23} \times 1600=2.21 \times 10^{-20} \mathrm{~W} / \mathrm{Hz}=-196.6 \mathrm{~dB}[\mathrm{~W} / \mathrm{Hz}]
$$

and its noise factor/noise figure is

$$
F_{a}=1600 / 290=5.52=7.42 \mathrm{~dB}
$$

Receiver noise: System noise

Noise factor F

Due to a definition of noise factor (in this case) as the ratio of noise powers on the output versus on the input, when a resistor in room temperature ($T_{0}=290 \mathrm{~K}$) generates the input noise, the PSD of the equivalent noise source (placed at the input) becomes

$$
N_{s \text { svs }}=k \underbrace{(F-1) T_{0}} \mathrm{~W} / \mathrm{Hz}
$$

Equivalent noise temperature

Receiver noise: Sev. noise sources (1)

A simple example

Receiver noise: Sev. noise sources (2)

After extraction of the noise sources from each component, we need to move them to one point.

When doing this, we must compensate for amplification and attenuation!
Amplifier.

Attenuator. N

Pierce's rule

A passive attenuator, in this case a feeder, has a noise figure equal to its attenuation.

$$
\begin{gathered}
N_{f}=k\left(F_{f}-1\right) T_{0}=k\left(L_{f}-1\right) T_{0} \\
\begin{array}{c}
\text { Remember to } \\
\text { convert from } \mathrm{dB}!
\end{array}
\end{gathered}
$$

The isotropic antenna

The isotropic antenna radiates equally in all directions

Azimuth pattern

The dipole antenna

$\lambda / 2$-dipole

This antenna does not radiate straight up or down. Therefore, more energy is available in other directions.

THIS IS THE PRINCIPLE BEHIND WHAT IS CALLED ANTENNA GAIN.

A dipole can be of any length, but the antenna patterns shown are only for the $\lambda / 2$-dipole.

Azimuth pattern

- - Antenna pattern of isotropic antenna.

Antenna gain (principle)

Antenna gain is a relative measure.
We will use the isotropic antenna as the reference.

The amount of increase in input power to the isotropic antenna, to obtain the same maximum radiation is called the antenna gain!

Antenna gain of the $\lambda / 2$ dipole is 2.15 dB .

A note on antenna gain

Sometimes the notation dBi is used for antenna gain (instead of dB).
The " i " indicates that it is the gain relative to the isotropic antenna (which we will use in this course).

Another measure of antenna gain frequently encountered is dBd , which is relative to the $\lambda / 2$ dipole.

$$
\left.G\right|_{d B i}=\left.G\right|_{d B d}+2.15
$$

Be careful! Sometimes it is not clear if the antenna gain is given in dBi or dBd .

EIRP: Effective Isotropic Radiated Power

EIRP = Transmit power (fed to the antenna) + antenna gain

$$
\left.E I R P\right|_{d B}=P_{T X \mid d B}+G_{T X \mid d B}
$$

Answers the questions:
How much transmit power would we need to feed an isotropic antenna to obtain the same maximum on the radiated power?

How "strong" is our radiation in the maximal direction of the antenna?

This is the more important one, since a limit on EIRP is a limit on the radiation in the maximal direction.

EIRP and the link budget

Path loss

Fading margin

Required C/N - another central concept

The detector characteristic is different for different system design choices.

REQUIRED QUALITY OUT:

Audio SNR
Perceptive audio quality
Bit-error rate
Packet-error rate etc.

Example for link budget

Noise and interference limited links

What is required distance between BSs?

Chapter 4

Propagation effects

Why channel modelling?

- The performance of a radio system is ultimately determined by the radio channel
- The channel models basis for
- system design
- algorithm design
- antenna design etc.
- Trend towards more interaction system-channel
- MIMO
- UWB

THE RADIO CHANNEL It is more than just a loss

- Some examples:
- behavior in time/place?
- behavior in frequency?
- directional properties?
- bandwidth dependency?
- behavior in delay?

BASIC PROPAGATION MECHANSISMS

Free-space loss

If we assume RX antenna to be isotropic:

$$
P_{R X}=\left(\frac{\lambda}{4 \pi d}\right)^{2} P_{T X}
$$

Attenuation between two isotropic antennas in free space is (free-space loss):

$$
L_{\text {free }}(d)=\left(\frac{4 \pi d}{\lambda}\right)^{2}
$$

Free-space loss Fris' law

Received power, with antenna gains $G_{T X}$ and $G_{R X}$:

$$
P_{R X}(d)=\frac{G_{R X} G_{T X}}{L_{\text {free }}(d)} P_{T X}=P_{T X}\left(\frac{\lambda}{4 \pi d}\right)^{2} G_{R X} G_{T X}
$$

Valid in the far field only

$$
\begin{aligned}
P_{R X \mid d B}(d) & =P_{T X \mid d B}+G_{T X \mid d B}-L_{\text {freed } d B}(d)+G_{R X \mid d B} \\
& =P_{T X \mid d B}+G_{T X \mid d B}-10 \log _{10}\left(\frac{4 \pi d}{\lambda}\right)^{2}+G_{R X \mid d B}
\end{aligned}
$$

Free-space loss What is far field?

Rayleigh distance:

$$
=\prod_{\|}^{\lambda / 2 \text {-dipole }} \begin{array}{ll}
\\
\lambda / 2 & L_{a}=\lambda / 2 \\
d_{R}=\lambda / 2
\end{array}
$$

$$
d_{R}=\frac{2 L_{a}^{2}}{\lambda}
$$

where L_{a} is the largest dimesion of the antenna.

Reflection and transmission (1)

Reflection and transmission (2)

- Snell's law
- Reflection angle $\quad \Theta_{r}=\Theta_{e}$
- Transmission angle $\frac{\sin \theta_{\mathrm{t}}}{\sin \theta_{\mathrm{e}}}=\frac{\sqrt{\varepsilon_{1}}}{\sqrt{\varepsilon_{2}}}$
- Transmission and reflection: distinguish TE and TM waves

TE

TM

Reflection and transmission (3)

$$
\rho_{\mathrm{TM}}=\frac{\sqrt{\varepsilon_{2}} \cos \Theta_{\mathrm{e}}-\sqrt{\varepsilon_{1}} \cos \left(\Theta_{\mathrm{t}}\right)}{\sqrt{\varepsilon_{2}} \cos \Theta_{\mathrm{e}}+\sqrt{\varepsilon_{1}} \cos \left(\Theta_{\mathrm{t}}\right)} \quad \rho_{\mathrm{TE}}=\frac{\sqrt{\varepsilon_{1}} \cos \left(\Theta_{\mathrm{e}}\right)-\sqrt{\varepsilon_{2}} \cos \left(\Theta_{\mathrm{t}}\right)}{\sqrt{\varepsilon_{1}} \cos \left(\Theta_{\mathrm{e}}\right)+\sqrt{\varepsilon_{2}} \cos \left(\Theta_{\mathrm{t}}\right)}
$$

Brewster

angle of incidence angle

Transmission through a wall - layered structures

Total transmission coefficient

$$
T=\frac{T_{1} T_{2} e^{-j \alpha}}{1+R_{1} R_{2} e^{-2 j \alpha}}
$$

total reflection coefficient

$$
\rho=\frac{\rho_{1}+\rho_{2} e^{-j 2 \alpha}}{1+\rho_{1} \rho_{2} e^{-2 j \alpha}}
$$

with the electrical length in the wall

$$
\alpha=\frac{2 \pi}{\lambda} \sqrt{\varepsilon_{1}} d_{\text {layer }} \cos \left(\Theta_{\mathrm{t}}\right)
$$

The d^{-4} law (1)

- For the following scenario

- the power goes like

$$
P_{\mathrm{RX}}(d) \approx P_{\mathrm{TX}} G_{\mathrm{TX}} G_{\mathrm{RX}}\left(\frac{h_{\mathrm{TX}}{ }^{h_{\mathrm{RX}}}}{d^{2}}\right)^{2} .
$$

- for distances greater than

$$
d_{\text {break }} \gtrsim 4 h_{\mathrm{TX}} h_{\mathrm{RX}} / \lambda
$$

The d^{-4} law (2)

Diffraction, Huygen's principle

Diffraction

- Single or multiple edges
- makes it possible to go behind corners
- less pronounced when the wavelength is small compared to objects

Diffraction coefficient

The Fresnel integral is defined

$$
F\left(v_{\mathrm{F}}\right)=\int_{0}^{v_{\mathrm{F}}} \exp \left(-j \pi \frac{t^{2}}{2}\right) d t .
$$

with the Fresnel parameter

$$
v_{\mathrm{F}}=\alpha_{k} \sqrt{\frac{2 d_{1} d_{2}}{\lambda\left(d_{1}+d_{2}\right)}}
$$

$$
E_{\text {total }}=\exp \left(-j k_{0} x\right)\left(\frac{1}{2}-\frac{\exp (-j \pi / 4)}{\sqrt{2}} F\left(v_{\mathrm{F}}\right)\right)
$$

Diffraction in real environments

Diffraction - Bullington's method

Copyright: Wiley
equivalent screen

$$
E_{\text {total }}=\exp \left(-j k_{0} x\right)\left(\frac{1}{2}-\frac{\exp (-j \pi / 4)}{\sqrt{2}} F\left(v_{\mathrm{F}}\right)\right) \quad v_{\mathrm{F}}=\alpha_{k} \sqrt{\frac{2 d_{1} d_{2}}{\lambda\left(d_{1}+d_{2}\right)}}
$$

Diffraction - Epstein-Petersen Method

Scattering

Kirchhoff theory - scattering by rough surfaces

for Gaussian surface distribution angle of incidence
$\rho_{\text {rough }}=\rho_{\text {smooth }} \exp \left[-2\left(k_{0} \sigma_{\mathrm{h}} \sin \psi\right)^{2}\right]$
standard deviation of height

Pertubation theory - scattering by rough surfaces

$$
\sigma_{\mathrm{h}}^{2} W(\vec{\rho})=E_{\vec{r}}\{h(\vec{r}) h(\vec{r}+\vec{\rho})\}
$$

More accurate than Krichhoff theory, especially for large angles of incidence and "rougher" surfaces

Waveguiding

Waveguiding effects often result in lower propagation exponents

$$
n=1.5-5
$$

This means lower path loss along certain street corridors

Chapter 5

Statistical modeling

A narrowband system described in complex notation (noise free)

In: $\quad x(t)=A(t) \exp (j \phi(t))$
Out: $y(t)=A(t) \exp (j \phi(t)) \exp (t) \alpha(t) \exp (j \theta(t)) \exp (t+t)$

$$
=A(t) \alpha(t) \exp (j(\phi(t)+\theta(t)))
$$

It is the behavior of the channel attenuation and phase we are going to model.

THE RADIO CHANNEL Path loss

What is large scale and small scale?

Small-scale fading Two waves

Small-scale fading Two waves

Wave 1 + Wave 2

THE RADIO CHANNEL Small-scale fading (cont.)

Illustration of interference pattern from above
Transmitter
\square Reflector

Small-scale fading Many incoming waves

Many incoming waves with
Add them up as phasors

$$
r \exp (j \phi)=r_{1} \exp \left(j \phi_{1}\right)+r_{2} \exp \left(j \phi_{2}\right)+r_{3} \exp \left(j \phi_{3}\right)+r_{4} \exp \left(j \phi_{4}\right)
$$

Small-scale fading Many incoming waves

Re and Im components are sums of many independent equally distributed components
$\operatorname{Re}(r) \in N\left(0, \sigma^{2}\right)$
$\operatorname{Re}(r)$ and $\operatorname{Im}(r)$ are independent
The phase of r has a uniform distribution

Small-scale fading Rayleigh fading

No dominant component (no line-of-sight)

Amplitude distribution
Rayleigh

$$
p d f(r)=\frac{r}{\sigma^{2}} \exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right)
$$

Small-scale fading Rayleigh fading

$$
\operatorname{Pr}\left(r<r_{\min }\right)=\int_{0}^{r_{\min }} p d f(r) d r=1-\exp \left(-\frac{r_{\min }^{2}}{r_{r m s}{ }^{2}}\right)
$$

Small-scale fading Rayleigh fading - fading margin

$$
\begin{aligned}
& M=\frac{r_{r m s}{ }^{2}}{r_{\min }{ }^{2}} \\
& M_{\mid d B}=10 \log _{10}\left(\frac{r_{r m s}{ }^{2}}{{r_{\min }}^{2}}\right)
\end{aligned}
$$

Small-scale fading Rayleigh fading - fading margin

How many dB fading margin, against Rayleigh fading, do we need to obtain an outage probability of 1% ?

$$
\operatorname{Pr}\left(r<r_{\min }\right)=1-\exp \left(-\frac{r_{\min }^{2}}{r_{r m s}^{2}}\right)=1 \%=0.01
$$

Some manipulation gives

$$
\begin{aligned}
& 1-0.01=\exp \left(-\frac{r_{\min }{ }^{2}}{r_{r m s}{ }^{2}}\right) \Rightarrow \ln (0.99)=-\frac{r_{\min }{ }^{2}}{r_{r m s}{ }^{2}} \\
& \begin{aligned}
\Rightarrow \frac{r_{\min }{ }^{2}}{r_{r m s}{ }^{2}}=-\ln (0.99)=0.01 & \Rightarrow M=\frac{r_{r m s}{ }^{2}}{r_{\min }{ }^{2}}=1 / 0.01=100 \\
& \Rightarrow M_{\mid d B}=20
\end{aligned}
\end{aligned}
$$

Small-scale fading
 Rayleigh fading - signal and interference

- What is the probability that the instantaneous SIR will be below 0 dB if the mean SIR is 10 dB when both the desired signal and the interferer experience Rayleigh fading?

$$
\operatorname{Pr}\left(r<r_{\text {min }}\right)=1-\frac{\bar{\sigma}^{2} r_{\text {min }}}{\left(\bar{\sigma}^{2}+r_{\text {min }}^{2}\right)}=1-\frac{10}{(10+1)} \approx 0.09
$$

Small-scale fading one dominating component

In case of Line-of-Sight (LOS) one component dominates.

- Assume it is aligned with the real axis

$$
\operatorname{Re}(r) \in N\left(A, \sigma^{2}\right) \quad \operatorname{Im}(r) \in N\left(0, \sigma^{2}\right)
$$

- The received amplitude has now a Ricean distribution instead of a Rayleigh
- The ratio between the power of the LOS component and the diffuse components is called Ricean K-factor

$$
k=\frac{\text { Power in LOS component }}{\text { Power in random components }}=\frac{A^{2}}{2 \sigma^{2}}
$$

Small-scale fading Rice fading

A dominant component

 (line of sight)

Line-of-sight (LOS) component with amplitude A.

Small-scale fading Rice fading, phase distribution

Small-scale fading Nakagami distribution

- In many cases the received signal can not be described as a pure LOS + diffuse components
- The Nakagami distribution is often used in such cases

$$
p d f(r)=\frac{2}{\Gamma(m)}\left(\frac{m}{\Omega}\right)^{m} r^{2 m-1} \exp \left(-\frac{m}{\Omega} r^{2}\right)
$$

$\Gamma(m)$ is the gamma function
$\Omega=\overline{r^{2}}$

$$
m=\frac{\Omega^{2}}{\left(r^{2}-\Omega\right)^{2}}
$$

with m it is possible to adjust the dominating power

Small-scale fading Doppler shifts

Receiving antenna moves with speed v_{r} at an angle θ relative to the propagation direction of the incoming wave, which has frequency f_{0}.

Frequency of received signal:

$$
f=f_{0}+v
$$

where the Doppler shift is

$$
v=-f_{0} \frac{v_{r}}{c} \cos (\theta)
$$

The maximal Doppler shift is

$$
v_{\max }=f_{0} \frac{v}{c}
$$

Small-scale fading Doppler shifts

How large is the maximum Doppler frequency at pedestrian speeds for 5.2 GHz WLAN and at highway speeds using GSM 900 ?

$$
v_{\max }=f_{0} \frac{v}{c}
$$

- $\mathrm{f}_{0}=5.210^{9} \mathrm{~Hz}, \mathrm{v}=5 \mathrm{~km} / \mathrm{h},(1.4 \mathrm{~m} / \mathrm{s}) \Rightarrow 24 \mathrm{~Hz}$
- $\mathrm{f}_{0}=90010^{6} \mathrm{~Hz}, \mathrm{v}=110 \mathrm{~km} / \mathrm{h},(30.6 \mathrm{~m} / \mathrm{s}) \Rightarrow 92 \mathrm{~Hz}$

Small-scale fading Doppler spectra

Small-scale fading Doppler spectrum

Incoming waves from several directions (relative to movement or RX)

Spectrum of received signal when a $f_{0} \mathrm{~Hz}$ signal is transmitted.

Small-scale fading The Doppler spectrum

$$
\begin{gathered}
S_{D}(v)=\int \rho(\Delta \tau) e^{-j 2 \pi v \Delta \tau} d \Delta \tau \\
\propto \frac{1}{\pi \sqrt{v_{\max }^{2}-v^{2}}} \\
\text { for }-v_{\max }<v<v_{\max }
\end{gathered}
$$

Doppler spectrum

 at center frequency f_{0}.

Small-scale fading Doppler spectrum

Small-scale fading
 Doppler spectrum

- Time correlation - how static is the channel?

$$
\rho(\Delta t)=E\left\{a(t) a^{*}(t+\Delta t)\right\} \propto J_{0}\left(2 \pi v_{\max } \Delta t\right)
$$

- The time correlation for the amplitude is

$$
\rho(\Delta t) \propto J_{0}^{2}\left(2 \pi v_{\max } \Delta t\right)
$$

Small-scale fading Fading dips

What about the length and the frequency of fading dips ?

Small-scale fading Statistics of fading dips

Frequency of the fading dips (normalized dips/second)

Length of fading dips
(normalized dip-length)

r/r rms

Large-scale fading Log-normal distribution

$\uparrow p d f\left(L_{d B}\right)$

Note dB scale

Deterministic mean
value of path loss, $L_{0 \mid d B}$
$p d f\left(L_{\mid d B}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{F \mid d B}} \exp \left(-\frac{\left(L_{d B}-L_{0 \mid d B}\right)^{2}}{2 \sigma_{F \mid d B}^{2}}\right)$

Standard deviation $\sigma_{F \mid d B} \approx 4 \ldots 10 \mathrm{~dB}$

Large-scale fading Basic principle

Chapter 6

Wideband channels

Delay (time) dispersion A simple case

Transmitted impulse

$$
h(\tau)=a_{1} \delta\left(\tau-\tau_{1}\right)+a_{2} \delta\left(\tau-\tau_{2}\right)+a_{3} \delta\left(\tau-\tau_{3}\right)
$$

Delay (time) dispersion One reflection/path, many paths

Slides for "Wireless Communications" © Edfors, Molisch, Tufvesson

Narrow- versus wide-band Channel impulse response

Narrow- versus wide-band Channel frequency response

System functions (1)

- Time-variant impulse response $h(t, \tau)$
- Due to movement, impulse response changes with time
- Input-output relationship:

$$
y(t)=\int_{-\infty}^{\infty} x(t-\tau) h(t, \tau) d \tau
$$

- Time-variant transfer function $H(t, f)$
- Perform Fourier transformation with respect to τ

$$
H(t, f)=\int_{-\infty}^{\infty} h(t, \tau) \exp (-j 2 \pi f \tau) d \tau
$$

- Input-output relationship

$$
Y(\widetilde{f})=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} X(f) H(t, f) \exp (j 2 \pi f t) \exp (-j 2 \pi \widetilde{f} t) d f d t
$$

becomes $Y(f)=X(f) H(f)$ only in slowly time-varying channels

Transfer function, Typical urban

Transfer function at 1800 MHz TU-channel

System functions (2)

- Further equivalent system functions:
- Since impulse response depends on two variables, Fourier transformation can be done w.r.t. each of them
-> four equivalent system descriptions are possible:
- Impulse response
- Time-variant transfer function
- Spreading function

$$
S(v, \tau)=\int_{-\infty}^{\infty} h(t, \tau) \exp (-j 2 \pi v t) d t
$$

- Doppler-variant spreading function

$$
B(v, f)=\int_{-\infty}^{\infty} S(v, \tau) \exp (-j 2 \pi f \tau) d \tau
$$

Stochastic system functions

- autocorrelation function (second-order statistics)

$$
R_{h}\left(t, t^{\prime}, \tau, \tau^{\prime}\right)=E\left\{h^{*}(t, \tau) h\left(t^{\prime}, \tau^{\prime}\right)\right\}
$$

- Input-output relationship:

$$
R_{y y}\left(t, t^{\prime}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_{x x}\left(t-\tau, t^{\prime}-\tau^{\prime}\right) R_{h}\left(t, t^{\prime}, \tau, \tau^{\prime}\right) d \tau d \tau^{\prime}
$$

The WSSUS model: mathematics

- If WSSUS is valid, ACF depends only on two variables (instead of four)
- ACF of impulse response becomes
$R_{h}\left(t, t+\Delta t, \tau, \tau^{\prime}\right)=\delta\left(\tau-\tau^{\prime}\right) P_{h}(\Delta t, \tau)$
$P_{h}(\Delta t, \tau) . \ldots$. Delay cross power spectral density
- ACF of transfer function
$R_{H}(t+\Delta t, f+\Delta f)=R_{H}(\Delta t, \Delta f)$
- ACF of spreading function
$R_{S}\left(v, v^{\prime}, \tau, \tau^{\prime}\right)=\delta\left(v-v^{\prime}\right) \delta\left(\tau-\tau^{\prime}\right) P_{s}(v, \tau)$
$P_{s}(v, \tau) \ldots . .$. Scattering function

Condensed parameters

- Correlation functions depend on two variables
- For concise characterization of channel, we desire
- A function depending on one variable or
- A single (scalar) parameter
- Most common condensed parameters
- Power delay profile
- Rms delay spread
- Coherence bandwidth
- Doppler spread
- Coherence time

Channel measures

Copyright: Shaker

Channel measures

Copyright: Shaker

Condensed parameters Power-delay profile

One interesting channel property is the power-delay profile (PDP), which is the expected value of the received power at a certain delay:

$$
P(\tau)=\mathrm{E}_{t}\left[|h(t, \tau)|^{2}\right] \xrightarrow{\begin{array}{c}
\mathrm{E}_{\mathrm{t}} \text { denotes } \\
\text { expectation } \\
\text { over time. }
\end{array}}
$$

For our tapped-delay line we get:

$$
\begin{aligned}
& P(\tau)=\mathrm{E}_{t}\left[\left|\sum_{i=1}^{N} \alpha_{i}(t) \exp \left(j \theta_{i}(t)\right) \delta\left(\tau-\tau_{i}\right)\right|^{2}\right] \\
&=\sum_{i=1}^{N} \mathrm{E}_{t}\left[\alpha_{i}^{2}(t)\right] \delta\left(\tau-\tau_{i}\right)=\sum_{i=1}^{N} 2 \sigma_{i}^{2} \delta\left(\tau-\tau_{i}\right) \\
& \text { Average power of tap i. }
\end{aligned}
$$

Condensed parameters Power-delay profile (cont.)

We can "reduce" the PDP into more compact descriptions of the channel:

Total power (time integrated):

$$
P_{m}=\int_{-\infty}^{\infty} P(\tau) d \tau
$$

Average mean delay:

$$
T_{m}=\frac{\int_{-\infty}^{\infty} \tau P(\tau) d \tau}{P_{m}}
$$

Average rms delay spread:

$$
S=\sqrt{\frac{\int_{-\infty}^{\infty} \tau^{2} P(\tau) d \tau}{P_{m}}-T_{m}}
$$

For our tapped-delay line channel:

$$
{ }^{\text {nnel: }} P_{m}=\sum_{i=1}^{N} 2 \sigma_{i}^{2}
$$

$$
T_{m}=\frac{\sum_{i=1}^{N} \tau_{i} 2 \sigma_{i}^{2}}{P_{m}}
$$

$$
S=\sqrt{\frac{\sum_{i=1}^{N} \tau_{i}^{2} 2 \sigma_{i}^{2}}{P_{m}}-T_{m}}
$$

Condensed parameters Frequency correlation

A property closely related to the power-delay profile (PDP) is the frequency correlation of the channel. It is in fact the Fourier transform of the PDP:

$$
\rho_{f}(\Delta f)=\int_{-\infty}^{\infty} P(\tau) \exp (-j 2 \pi \Delta f \tau) d \tau
$$

For our tapped delay-line channel we get:

$$
\begin{aligned}
\rho_{f}(\Delta f) & =\int_{-\infty}^{\infty}\left(\sum_{i=1}^{N} 2 \sigma_{i}^{2} \delta\left(\tau-\tau_{i}\right)\right) \exp (-j 2 \pi \Delta f \tau) d \tau \\
& =\sum_{i=1}^{N} 2 \sigma_{i}^{2} \exp \left(-j 2 \pi \Delta f \tau_{i}\right)
\end{aligned}
$$

Condensed parameters Coherence bandwidth

Channel measures

Copyright: Shaker

Condensed parameters The Doppler spectrum

Given the scattering function P_{s} (doppler spectrum as function of delay) we can calculate a total Doppler spectrum of the channel as:

$$
P_{B}(v)=\int P_{S}(v, \tau) d \tau
$$

For our tapped delay-line channel, we have:

$$
\begin{aligned}
P_{S}(v, \tau) & =\frac{2 \sigma_{i}^{2}}{\pi \sqrt{v_{i, \text { max }}{ }^{2}-v^{2}} \delta\left(\tau-\tau_{i}\right)} \\
P_{B}(v) & =\int_{-\infty}^{\infty} \frac{2 \sigma_{i}^{2}}{\pi \sqrt{v_{i, \text { max }}{ }^{2}-v^{2}}} \delta\left(\tau-\tau_{i}\right) d \tau \\
& =\sum_{i=1}^{N} \frac{2 \sigma_{i}^{2}}{\pi \sqrt{v_{i, \text { max }}{ }^{2}-v^{2}}}
\end{aligned}
$$

Condensed parameters The Doppler spectrum (cont.)

We can "reduce" the Doppler spectrum into more compact descriptions of the channel:

Total power (frequency integrated):

$$
P_{B, m}=\int_{-\infty}^{\infty} P_{B}(v) d v
$$

Average mean Doppler shift:

$$
T_{B, m}=\frac{\int_{-\infty}^{\infty} v P_{B}(v) d v}{P_{B, m}}
$$

Average rms Doppler spread:

$$
S_{B}=\sqrt{\frac{\int_{-\infty}^{\infty} v^{2} P(v) d v}{P_{B, m}}-T_{B, m}}
$$

$$
\begin{aligned}
T_{B, m} & =0 \\
S_{B} & =\sqrt{\frac{\sum_{i=1}^{N} \sigma_{i}^{2} v_{i, \max }^{2}}{P_{B, m}}}
\end{aligned}
$$

Channel measures

Copyright: Shaker

Condensed parameters Coherence time

Given the time correlation of a channel, we can define the coherence time T_{C} :

Condensed parameters The time correlation

A property closely related to the Doppler spectrun is the time correlation of the channel. It is in fact the inverse Fourier transform of the Doppler spectrum:

$$
\rho_{t}(\Delta t)=\int_{-\infty}^{\infty} P_{B}(v) \exp (j 2 \pi v \Delta t) d v
$$

For our tapped-delay line channel we get

$$
\begin{aligned}
\rho_{t}(\Delta t) & =\int_{-\infty}^{\infty} \sum_{i=1}^{N} \frac{2 \sigma_{i}^{2}}{\pi \sqrt{v_{i, \text { max }}^{2}-v^{2}}} \exp (j 2 \pi v \Delta t) d v \\
& =\sum_{i=1}^{N} \int_{-\infty}^{\infty} \frac{2 \sigma_{i}^{2}}{\pi \sqrt{v_{i, \text { max }}^{2}-v^{2}}} \exp (j 2 \pi v \Delta t) d v \\
& =\sum_{i=1}^{N} 2 \sigma_{i}^{2} J_{0}\left(2 \pi v_{i, \text { max }} \Delta t\right) \sim \begin{array}{l}
\text { Sum of time } \\
\text { correlations for } \\
\text { each tap. }
\end{array}
\end{aligned}
$$

It's much more complicated than what we have discussed!

Double directional impulse response

TX position RX position

number of multipath components for these positions

$$
h\left(t, \vec{r}_{\mathrm{TX}}, \vec{r}_{\mathrm{RX}}, \tau, \Omega, \Psi\right)=\sum_{\ell=1} h_{\ell}\left(t, \vec{r}_{\mathrm{TX}}, \vec{r}_{\mathrm{RX}}, \tau, \Omega, \Psi\right)
$$

direction-of-arrival
delay direction-of-departure

$$
h_{\ell}\left(t, \vec{r}_{\mathrm{TX}}, \vec{r}_{\mathrm{RX}}, \tau, \Omega, \Psi\right)=\left|a_{\ell}\right| e^{j \varphi_{\ell}} \delta\left(\tau-\tau_{\ell}\right) \delta\left(\Omega-\Omega_{\ell}\right) \delta\left(\Psi-\Psi_{\ell}\right)
$$

Physical interpretation

Directional models

- The double directional delay power spectrum is sometimes factorized w.r.t. DoD, DoA and delay.

$$
D D D P S(\Omega, \Psi, \tau)=A P S^{\mathrm{BS}}(\Omega) A P S^{\mathrm{MS}}(\Psi) P D P(\tau)
$$

- Often in reality there are groups of scatterers with similar DoD and DoA - clusters

Angular spread

$$
E\left\{s^{*}(\Omega, \Psi, \tau, v) s\left(\Omega^{\prime}, \Psi^{\prime}, \tau^{\prime}, v^{\prime}\right)\right\}=P_{s}(\Omega, \Psi, \tau, v) \delta\left(\Omega-\Omega^{\prime}\right) \delta\left(\Psi-\Psi^{\prime}\right) \delta\left(\tau-\tau^{\prime}\right) \delta\left(v-v^{\prime}\right)
$$

double directional delay power spectrum

$$
\operatorname{DDDPS}(\Omega, \Psi, \tau)=\int \mathrm{P}_{\mathrm{s}}(\Psi, \Omega, \tau, v) \mathrm{d} v
$$

$$
\begin{aligned}
& \text { angular delay power spectrum } \\
& \operatorname{ADPS}(\Omega, \tau)=\int D D D P S(\Psi, \Omega, \tau) G_{\mathrm{MS}}(\Psi) d \Psi
\end{aligned}
$$

angular power spectrum

$$
A P S(\Omega)=\int \operatorname{APDS}(\Omega, \tau) \mathrm{d} \tau
$$

power

$P=\int \operatorname{APS}(\Omega) \mathrm{d} \Omega$

Chapter 7

Channel modeling

Modelling methods

- Stored channel impulse responses
- realistic
- reproducible
- hard to cover all scenarios
- Deterministic channel models
- based on Maxwell's equations
- site specific
- computationally demanding
- Stochastic channel models
- describes the distribution of the field strength etc
- mainly used for design and system comparisons

Narrowband models Review of properties

Narrowband models contain "only one" attenuation, which is modeled as a propagation loss, plus large- and small-scale fading.

Path loss: Often proportional to $1 / \mathrm{d}^{\mathrm{n}}$, where n is the propagation exponent. (n may be different at different distances)

Large-scale fading: Log-normal distribution (normal distr. in dB scale)
Small-scale fading: Rayleig, Rice, Nakagami distributions ... (not in dB-scale)

Okumura's measurements

Extensive measurement campaign in Japan in the 1960's.
Parameters varied during measurements:

Frequency
Distance
Mobile station height Base station height Environment
$100-3000 \mathrm{MHz}$
$1-100 \mathrm{~km}$
1-10 m
20-1000 m
medium-size city, large city, etc.

Propagation loss is given as median values (50\% of the time and 50% of the area).

Okumura's measurements excess loss

FIGURE 7.12

Example

These curves are only for $h_{\mathrm{b}}=200 \mathrm{~m}$ and $h_{\mathrm{m}}=3 \mathrm{~m}$

The Okumura-Hata model How to calculate prop. loss

$$
\begin{aligned}
& \quad L_{O-H}=A+B \log \left(d_{\mid k m}\right)+C \\
& A=69.55+26.16 \log \left(f_{0 \mid M H z}\right)-13.82 \log \left(h_{b}\right)-a\left(h_{m}\right) \\
& B=44.9-6.55 \log \left(h_{b}\right)
\end{aligned}
$$

h_{b} and h_{m} in meter

The COST 231-Walfish-Ikegami model How to calculate prop. loss

Details about calculations can be found in the textbook, Section 7.6.2.

Motley-Keenan indoor model

For indoor environments, the attenuation is heavily affected by the building structure, walls and floors play an important rule

$$
P L=P L_{0}+10 n \log \left(d / d_{0}\right)+F_{\text {wall }}+F_{\text {floor }}
$$

distance dependent path loss

sum of attenuations from walls, 1-20 dB/wall
sum of attenuation from the floors (often larger than wall attenuation)
site specific, since it is valid for a particular case

Wideband models

- Tapped delay line model often used

$$
h(t, \tau)=\sum_{i=1}^{N} \alpha_{i}(t) \exp \left(j \theta_{i}(t)\right) \delta\left(\tau-\tau_{i}\right)
$$

- Often Rayleigh-distributed taps, but might include LOS and different distributions of the tap values
- Mean tap power determined by the power delay profile

Power delay profile

- Often described by a single exponential decay

$$
P_{s c}(\tau)=\left\{\begin{array}{c}
\exp \left(-\tau / S_{\tau}\right) \\
0
\end{array} \text { delay spread }_{\text {otherwise }}{ }^{\log \left(P_{P c}(\tau)\right)}\right.
$$

- though often there is more than one "cluster"

$$
P(\tau)=\left\{\begin{array}{cc}
\sum_{k} \frac{P_{k}^{c}}{S_{\tau, k}^{c}} P_{s c}\left(\tau-\tau_{0, k}^{c}\right) & \tau \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

arrival time

- If the bandwidth is high, the time resolution is large so we might resolve the different multipath components
- Need to model arrival time
- The Saleh-Valenzuela model:

$$
h(\tau)=\sum_{l=0}^{L} \sum_{\mathrm{k}=0}^{\mathrm{K}} \alpha_{\mathrm{k}, 1}(\tau) \delta\left(\tau-\mathrm{T}_{1}-\tau_{\mathrm{k}, \mathrm{l}}\right)
$$

- The Δ-K-model:
arrival rate:

Wideband models COST 207 model for GSM

The COST 207 model specifies:

FOUR power-delay profiles for different environments.

FOUR Doppler spectra used for different delays.

IT DOES NOT SPECIFY PROAGATION LOSSES FOR THE DIFFERENT ENVIRONMENTS!

Wideband models COST 207 model for GSM

Four specified power-delay profiles

Wideband models COST 207 model for GSM

Four specified Doppler spectra

CLASS $\tau_{i} \leq 0.5 \mu \mathrm{~s}$

GAUS1
$0.5 \mu \mathrm{~s}<\tau_{i} \leq 2 \mu \mathrm{~s}$

RICE
Shortest
path in
rural areas

Wideband models COST 207 model for GSM

Doppler spectra:
CLASS
GAUS2

Wideband models ITU-R model for 3G

Tap No.	delay/ns	power/dB	delay/ns	power/dB
INDOOR	CHANNEL A (50%)		CHANNEL B (45\%)	
1	0	0	0	0
2	50	-3	100	-3.6
3	110	-10	200	-7.2
4	170	-18	300	-10.8
5	290	-26	500	-18.0
6	310	-32	700	-25.2
PEDESTRIAN	CHANNEL A (40\%)		CHANNEL B (55\%)	
1	0	0	0	0
2	110	-9.7	200	-0.9
3	190	-19.2	800	-4.9
4	410	-22.8	1200	-8.0
5			2300	-7.8
6			3700	-23.9
VEHICULAR	CHANNEL A (40\%)		CHANNEL B (55\%)	
1	0	0	0	-2.5
2	310	-1	300	0
3	710	-9	8900	-12.8
4	1090	-10	12900	-10.0
5	1730	-15	17100	-25.2
6	2510	-20	20000	-16.0

Geometry-based stochastic channel model (GSCM)

Temporal evolution - GSCM

- Temporal evolution of channel easily implemented

Modeling interference with GSCM

- Spatial correlation between interfering mobiles

MIMO channel

- channel matrix

$$
\boldsymbol{H}(\tau)=\left[\begin{array}{cccc}
h_{11}(\tau) & h_{12}(\tau) & \cdots & h_{1 M_{\mathrm{Tx}}}(\tau) \\
h_{21}(\tau) & h_{22}(\tau) & \cdots & h_{2 M_{\mathrm{Tx}}}(\tau) \\
\vdots & \vdots & \ddots & \vdots \\
h_{M_{\mathrm{Rx} 1}}(\tau) & h_{M_{\mathrm{Rx}}}(\tau) & \cdots & h_{M_{\mathrm{Rx}} M_{\mathrm{Tx}}}(\tau)
\end{array}\right]
$$

- signal model

$$
\boldsymbol{y}(t)=\sum_{\tau=0}^{D-1} \boldsymbol{H}(\tau) \cdot \boldsymbol{x}(t-\tau)
$$

- mean channel $\overline{\boldsymbol{H}}(\tau)=\mathrm{E}\{\boldsymbol{H}(\tau)\}$
- correlation tensor $R_{m p}^{n q}(\tau)=\mathrm{E}\left\{h_{n}^{m}(\tau) \cdot h_{p}^{q^{*}}(\tau)\right\}$ of order four

Kronecker model

- The spatial structure of the MIMO channel is neglected.
- The MIMO channel is described by separated link ends:

$$
\boldsymbol{R}_{\boldsymbol{H}}=c \cdot \boldsymbol{R}_{\mathrm{Tx}} \otimes \boldsymbol{R}_{\mathrm{Rx}} \quad \boldsymbol{H}=\boldsymbol{R}_{\mathrm{Rx}}^{1 / 2} \boldsymbol{G} \boldsymbol{R}_{\mathrm{Tx}}^{\mathrm{T} / 2}
$$

Any transmit signal results in one and the same receive correlation!

Kronecker model (cont.)

Joint APS is the product of marginal Rx- and Tx-APS.

Kronecker model (cont.)

Joint APS is the product of marginal Rx- and Tx-APS.

Kronecker approximation

GSCM for MIMO

- GSCM - original version:
- Locate scatterers according to certain pdf
- only single scattering

- MIMO version:
- model all effects that involve scatterers
- Relative strength of propagation processes by weighting
- Single scattering is not sufficient for MIMO!
- MIMO capacity strongly depends on the angular spread.
- Double- (multi-) Scattering increases angular spread.

The COST 259 DCM

- COST 259 "Flexible Personalized Wireless

Communication" Subgroup 2.1 Directional Channel Model

- European research initiative
- Includes operators, manufacturers, universities
- Close cooperation with other European programs
- Model widely used for smart antenna simulations
- Now also used for MIMO

COST 259 DCM - Philosophy

- Parametric approach, WSSUS not required
- No statement about implementation method (stochastic or GSCM)
- Based on clustering approach
- Multi-layer approach:
- Radio environments
- Large-scale effects
- Small-scale effects

Radio environments

COST 259 DCM - Simulation procedure

Simulation steps:

1) select scenario
2) select global parameters (number of clusters, mean Rice factor,....)
3) REPEAT
compute one realization of global parameters. This realization prescribes smallscale averaged power profiles (ADPS)
create many instantaneous complex impulse responses from this average ADPS

Generalized Hilly Terrain (GHT)

COST 259 DCM - Important features

- Very realistic !
- Distinguishes 13 different radio environments
- Treats large-scale and small-scale variations
- Far scatterer clusters included, with birth/death process
- Delay spread and angular spread treated as (correlated) random variables
- Angular spectra are functions of delay
- Azimuth and elevation

Deterministic modeling methods

- Solve Maxwell's equations with boundary conditions
- Problems:
- Data base for environment
- Computation time
- "Exact" solutions
- Method of moments
- Finite element method
- Finite-difference time domain (FDTD)
- High frequency approximation
- All waves modeled as rays that behave as in geometrical optics
- Refinements include approximation to diffraction, diffuse scattering, etc.

Ray launching

Ray tracing

- Determines rays that can go from one TX position to one RX position
- Uses imagining principle
- Similar to techniques known from computer science
- Then determine attenuation of all those possible paths

How does the signal reach the receiver Outdoor-to-indoor

How does the signal reach the receiver In the office

How does the signal leave the transmitter At the roof

In all offices

Copyright: IEEE

How does the signal reach the receiver outdoor urban

TraITSTIILEI

Signal arrives from some specific areas

Diffraction, reflection, scattering, transmission

Chapter 8

Channel sounding

Channel measurements

In order to model the channel behavior we need to measure its properties

- Time domain measurements
- impulse sounder
- correlative sounder
- Frequency domain measurements
- Vector network analyzer
- Directional measurements
- directional antennas
- real antenna arrays
- multiplexed arrays
- virtual arrays

Basic identifiability of the channel

- The channel can be measured uniquely only if
- sampling theorem

$$
f_{\text {rep }} \geq 2 v_{\max }
$$

$$
\frac{1}{f_{\text {rep }}} \geq \tau_{\max }
$$

- Therefore, a channel can only be measured uniquely if it is underspread

$$
2 \tau_{\max } v_{\max } \leq 1
$$

- This condition is fulfilled in all practical wireless applications

Impulse sounder

Correlative sounder

correlation peak
$\begin{array}{ll}-T_{c} & T_{c}\end{array}$
measured impulse response

Frequency domain measurements

- Use a vector network analyzer or similar to determine the transfer function of the channel

$$
H_{\text {meas }}(f)=H_{\text {TXantenna }}(f) * H_{\text {chamel }}(f) * H_{R \text { XXantenna }}(f)
$$

- Need to know the influence of the measurement system

Channel sounding - directional antenna

- Measure one impulse response for each antenna orientation

Channel sounding - antenna array

- Measure one impulse response for each antenna element
- Ambiguity with linear array

Real, multiplexed, and virtual arrays

- Real array: simultaneous measurement at all antenna elements

Digital Signal Processing

> Multiplexed array: short time intervals between measurements at different elements

Digital Signal Processing

no problem with mutual coupling
$R X$

Directional analysis

- The DoA can, e.g., be estimated by correlating the received signals with steering vectors.

$$
\vec{a}(\phi)=\left(\begin{array}{c}
1 \\
\exp \left(-j k_{0} d \cos (\phi)\right) \\
\exp \left(-j 2 k_{0} d \cos (\phi)\right) \\
\vdots \\
\exp \left(-j(M-1) k_{0} d \cos (\phi)\right)
\end{array}\right)
$$

- An element spacing of $d=5.8 \mathrm{~cm}$ and an angle of arrival of $\phi=20$ degrees gives a time delay of $6.6 \cdot 10^{-11} \mathrm{~s}$ between neighboring elements

High resolution algorithms

- In order to get better angular resolution, other techniques for estimating the angles are used, e.g.:
- MUSIC, subspace method using spectral search
- ESPRIT, subspace method
- MVM (Capon's beamformer), rather easy spectral search method
- SAGE, iterative maximum likelihood method
- Based on models for the propagation
- Rather complex, one measurement point may take 15 minutes on a decent computer

Antenna array TX

- Transmission must be done so that RX can distinguish signals from different TX receivers
\rightarrow Transmit signals should be orthogonal
- Orthogonality in time

Chapter 9

Antennas

Antennas in real channels

- One important aspect is how the channel and antenna interact
- The antenna pattern determines what the system sees
- Delay spread and angular spread affected by the antenna pattern
- The user may have a large influence on the behavior of the antenna
- Change in antenna pattern
- Change in efficiency - miss-match

Important antenna parameters

- Directivitiy
- Total power in a certain direction compared to total transmitted power
- Efficiency

$$
\eta=\frac{R_{\text {rad }}}{R_{\text {rad }}+R_{\text {ohmic }}+R_{\text {macch }}}
$$

- Q-factor
- Stored energy compared to dissipated energy
- Mean effective gain
- Include influence of random channel
- Average received power compared to average received power by isotropic antenna in real environment
- Polarization
- Bandwidth

Mobile station antennas

Impact of user on MS antenna

Base station antennas

Base station antenna pattern affected by the mast (30 cm from antenna).
X-Y- Palttern

Base station antennas

Base station antenna pattern affected by a concrete foundation.

Common antenna types

- Linear antennas (dipole, monopole)
- Helical antennas
- Microstrip antennas
- PIFA and RCDLA antennas

Linear antennas (1)

- Hertzian dipole (short dipole)
- Antenna pattern:

$$
\widetilde{G}(\varphi, \theta) \propto \sin (\theta)
$$

- Gain

$$
G_{\max }=1.5
$$

- $\lambda / 2$ dipole
- Pattern

$$
\widetilde{G}(\varphi, \theta) \propto \frac{\cos \left(\frac{\pi}{2} \cos (\theta)\right)}{\sin (\theta)}
$$

- Gain

$$
G_{\max }=1.64
$$

Linear antennas (2)

- Radiation resistance of dipoles
- Uniform current distribution

$$
R_{\mathrm{rad}}^{\text {uniform }}=80 \pi^{2}\left(L_{\mathrm{a}} / \lambda\right)^{2}
$$

- Tapered current distribution

$$
R_{\mathrm{rad}}^{\mathrm{tapered}}=0.25 R_{\mathrm{rad}}^{\mathrm{uniform}}
$$

- Monopole over groundplane
- Twice the gain of dipole
- Half the radiation resistance of dipole

Helical antenna

- Combination of loop antenna and linear antenna
- If dimensions much smaller than wavelength, behaves like linear antenna
- Bandwidth, efficiency, and radiation resistance increase with increasing h

h

Microstrip antennas

- Dielectric substrate with ground plane on one side, and metallic patch on the other
- Properties determined by
- Shape of patch: size must be at least

$$
L=0.5 \lambda_{\text {substrate }}
$$

- Dielectric properties of substrate

$$
\lambda_{\text {substrate }}=\lambda_{0} / \sqrt{\varepsilon_{\mathrm{r}}}
$$

PIFA and RCDLA

- PIFA (Planar inverted F antenna)

- RCDLA (Radiation-coupled dual-L antenna
radiation-
coupled
element

Lelements Feed

Multiband antennas

- For many applications, different wireless services need to be covered
- Example: cellular handset
- GSM 900
- GSM 1800
- GSM 1900
- Bluetooth

Chapter 10

Structure of a wireless communications link

Block diagram

Block diagram transmitter

Block diagram receiver

Chapter 11

Modulation

RADIO SIGNALS AND COMPLEX NOTATION

Simple model of a radio signal

- A transmitted radio signal can be written

$$
s(t)=A \cos (2 \pi f t+\phi)
$$

- By letting the transmitted information change the amplitude, the frequency, or the phase, we get the tree basic types of digital modulation techniques
- ASK (Amplitude Shift Keying)
- FSK (Frequency Shift Keying),
- PSK (Phase Shift Keying)

The IQ modulator

Take a step into the complex domain:
Complex envelope $\tilde{s}(t)=s_{I}(t)+j s_{Q}(t)$
Carrier factor

$$
e^{j 2 \pi f_{c} t}
$$

$$
\square s(t)=\operatorname{Re}\left\{\tilde{s}(t) e^{j 2 \pi f_{c} t}\right\}
$$

Interpreting the complex notation

Complex envelope (phasor)

Polar coordinates:
$\tilde{s}(t)=s_{I}(t)+j s_{Q}(t)=A(t) e^{j \phi(t)}$

Transmitted radio signal

$$
\begin{aligned}
s(t) & =\operatorname{Re}\left\{\tilde{s}(t) e^{j 2 \pi f_{c} t}\right\} \\
& =\operatorname{Re}\left\{A(t) e^{j \phi(t)} e^{j 2 \pi f_{c} t}\right\} \\
& =\operatorname{Re}\left\{A(t) e^{j\left(2 \pi f_{c} t+\phi(t)\right)}\right\} \\
& =A(t) \cos \left(2 \pi f_{c} t+\phi(t)\right)
\end{aligned}
$$

By manipulating the amplitude $A(\mathrm{t})$ and the phase $\phi(\mathrm{t})$ of the complex envelope (phasor), we can create any type of modulation/radio signal.

Example: Amplitude, phase and frequency modulation

$$
s(t)=A(t) \cos \left(2 \pi f_{c} t+\phi(t)\right)
$$

MODULATION BASICS

Pulse amplitude modulation (PAM) The modulation process

$$
\text { PAM: } s_{L P}(t)=\sum^{\infty} c_{m} g\left(t-m T_{s}\right) \quad \begin{gathered}
\text { Symbol } \\
\text { time }
\end{gathered}
$$

"Standard" basis pulse criteria
$\int_{-\infty}^{\infty}|g(t)|^{2} d t=1$ or $=T_{s}$
(energy norm.)
$\int_{-\infty}^{\infty} g(t) g^{*}\left(t-m T_{s}\right) d t=0, m \neq 0$ (orthogonality)

Bits

Complex domain

Pulse amplitude modulation (PAM) Basis pulses and spectrum

Assuming that the complex numbers c_{m} representing the data are independent, then the power spectral density of the base band PAM signal becomes:

$$
S_{L P}(f) \sim\left|\int_{-\infty}^{\infty} g(t) e^{-j 2 \pi f t} d t\right|^{2}
$$

which translates into a radio signal (band pass) with

$$
S_{B P}(f)=\frac{1}{2}\left(S_{L P}\left(f-f_{c}\right)+S_{L P}\left(-f-f_{c}\right)\right)
$$

Pulse amplitude modulation (PAM) Basis pulses and spectrum

Illustration of power spectral density of the (complex) base-band signal, $\mathcal{S}_{\mathrm{LP}}(\pi)$, and the (real) radio signal, $S_{\mathrm{BP}}(f)$.

Can be asymmetric, since it is a complex signal.

What we need are basis pulses $g(t)$ with nice properties like:

- Narrow spectrum (low side-lobes)
- Relatively short in time (low delay)

Pulse amplitude modulation (PAM) Basis pulses

TIME DOMAIN
FREQ. DOMAIN
Rectangular [in time]

(Root-) Raised-cosine [in freq.]

Pulse amplitude modulation (PAM) Interpretation as IQ-modulator

For real valued basis functions $g(t)$ we can view PAM as:

(Both the rectangular and the (root-) raised-cosine pulses are real valued.)

Multi-PAM
 Modulation with multiple pulses

Bits
Complex domain

multi-PAM: $\quad s_{L P}(t)=\sum_{m=-\infty}^{\infty} g_{c_{m}}\left(t-m T_{s}\right)$
"Standard" basis pulse criteria

$$
\begin{array}{lr}
\int_{-\infty}^{\infty}\left|g_{c_{m}}(t)\right|^{2} d t=1 \text { or }=T_{s} & \text { (energy norm.) } \\
\int_{-\infty} g_{c_{m}}(t) g_{c_{n}}{ }^{*}(t) d t=0, c_{m} \neq c_{n} & \text { (orthogonality) } \\
\int_{-\infty}^{\infty} g_{c_{m}}(t) g_{c_{m}}{ }^{*}\left(t-n T_{s}\right) d t=0, n \neq 0 \text { (orthogonality) }
\end{array}
$$

Several different pulses

Multi-PAM
 Modulation with multiple pulses

Frequency-shift keying (FSK) with M (even) different transmission frequencies can be interpreted as multi-PAM if the basis functions are chosen as:

$$
\begin{aligned}
& \quad g_{i}(t)=\exp (-j \pi i \Delta f t) \text { for } 0 \leq t \leq T_{s} \\
& \text { for } \mathrm{i}=+/-1,+/-3, \ldots,+/-\mathrm{M} / 2
\end{aligned}
$$

Bits: $00 \quad 01 \quad 10 \quad 11$

Continuous-phase FSK (CPFSK) The modulation process

Bits
Complex domain

CPFSK: $\quad S_{L P}(t)=A \exp \left(j \Phi_{\text {CPFSK }}(t)\right)$
where the amplitude A is constant and the phase is
pulse

Continuous-phase FSK (CPFSK) The Gaussian phase basis pulse

$B T_{s}=0.5$

SIGNAL SPACE DIAGRAM

Principle of signal-space diagram (1)

- Represent a continuous signal by a discrete vector
- Choice of expansion functions:
- In passband, usually

$$
\begin{aligned}
& \varphi_{\mathrm{BP}, 1}(t)=\sqrt{\frac{2}{T_{\mathrm{S}}}} \cos \left(2 \pi f_{\mathrm{c}} t\right) \\
& \varphi_{\mathrm{BP}, 2}(t)=\sqrt{\frac{2}{T_{\mathrm{S}}}} \sin \left(2 \pi f_{\mathrm{c}} t\right) .
\end{aligned}
$$

- In baseband, usually

$$
\begin{aligned}
& \varphi_{1}(t)=\sqrt{\frac{1}{T_{\mathrm{S}}}} \cdot 1 \\
& \varphi_{2}(t)=\sqrt{\frac{1}{T_{\mathrm{S}}}} \cdot j
\end{aligned}
$$

Principle of signal-space diagram (2)

- Signal vector for m-th signal

$$
s_{m, n}=\int_{0}^{T_{\mathrm{S}}} s_{m}(t) \varphi_{n}^{*}(t) d t
$$

- Energy contained in signal

$$
\begin{aligned}
& E_{\mathrm{S}, m}=\int_{0}^{T_{\mathrm{S}}} S_{\mathrm{BP}, m}{ }^{2}(t) d t=\left\|\mathbf{s}_{\mathrm{BP}, m}\right\|^{2} \\
& E_{\mathrm{S}, m} \approx \frac{1}{2} \int_{0}^{T_{\mathrm{S}}}\left\|s_{\mathrm{LP}, m}(t)\right\|^{2} d t=\frac{1}{2}\left\|\mathbf{s}_{\mathrm{LP}, m}\right\|^{2}
\end{aligned}
$$

- Correlation coefficients between signals k and m

$$
\operatorname{Re}\left\{\rho_{k, m}\right\}=\frac{\mathbf{s}_{\mathrm{BP}, m} \mathbf{s}_{\mathrm{BP}, k}}{\left\|\mathbf{s}_{\mathrm{BP}, m}\right\|\left\|\mathbf{s}_{\mathrm{BP}, k}\right\|}
$$

- Take care about normalization BP vs. LP

IMPORTANT MODULATION FORMATS

Binary phase-shift keying (BPSK) Rectangular pulses

Binary phase-shift keying (BPSK) Rectangular pulses

Complex representation

Signal space diagram

Binary phase-shift keying (BPSK) Rectangular pulses

Power spectral density for BPSK

Contained percentage of total energy	spectral efficiency
90%	$0.59 \mathrm{Bit} / \mathrm{s} / \mathrm{Hz}$
99%	$0.05 \mathrm{Bit} / \mathrm{s} / \mathrm{Hz}$

Binary amplitude modulation (BAM) Raised-cosine pulses (roll-off 0.5)

Binary amplitude modulation (BAM) Raised-cosine pulses (roll-off 0.5)

Complex representation

Signal space diagram

Binary amplitude modulation (BAM) Raised-cosine pulses (roll-off 0.5)

Contained percentage of total energy	spectral efficiency
90%	$1.02 \mathrm{Bit} / \mathrm{s} / \mathrm{Hz}$
99%	$0.79 \mathrm{Bit} / \mathrm{s} / \mathrm{Hz}$

Quaternary PSK (QPSK or 4-PSK) Rectangular pulses

Complex representation

Radio signal

Quaternary PSK (QPSK or 4-PSK) Rectangular pulses

Contained percentage of total energy	spectral efficiency
90%	$1,18 \mathrm{Bit} / \mathrm{s} / \mathrm{Hz}$
99%	$0.10 \mathrm{Bit} / \mathrm{s} / \mathrm{Hz}$

Quadrature ampl.-modulation (QAM) Root raised-cos pulses (roll-off 0.5)

Complex representation

Contained percentage of total energy	spectral efficiency
90%	$2.04 \mathrm{Bit} / \mathrm{s} / \mathrm{Hz}$
99%	$1.58 \mathrm{Bit} / \mathrm{s} / \mathrm{Hz}$

Amplitude variations The problem

Signals with high amplitude variations leads to less efficient amplifiers.
Complex representation of QPSK

Amplitude variations A solution

Amplitude variations A solution

Looking at the complex representation ...

QPSK without rotation

QPSK with rotation

Offset QPSK (OQPSK) Rectangular pulses

In-phase signal

Quadrature signal

Offset QPSK Rectangular pulses

Complex representation

Offset QAM (OQAM) Raised-cosine pulses

Higher-order modulation

16-QAM signal space diagram

Binary frequency-shift keying (BFSK) Rectangular pulses

Binary frequency-shift keying (BFSK) Rectangular pulses

Complex representation

Signal space diagram

Binary frequency-shift keying (BFSK) Rectangular pulses

Contained percentage of total energy	spectral efficiency
90%	$0.59 \mathrm{Bit} / \mathrm{s} / \mathrm{Hz}$
99%	$0.05 \mathrm{Bit} / \mathrm{s} / \mathrm{Hz}$

Continuous-phase modulation

Basic idea:

- Keep amplitude constant
- Change phase continuously

Minimum shift keying (MSK)

Simple MSK implementation

Minimum shift keying (MSK)

Power spectral density of MSK

Contained percentage of total energy	spectral efficiency
90%	$1,29 \mathrm{Bit} / \mathrm{s} / \mathrm{Hz}$
99%	$0,85 \mathrm{Bit} / \mathrm{s} / \mathrm{Hz}$

Gaussian filtered MSK (GMSK)

Further improvement of the phase: Remove 'corners'

Gaussian filtered MSK (GMSK)

Simple GMSK implementation

GSFK is used in e.g. Bluetooth.

Gaussian filtered MSK (GMSK)

Digital GMSK implementation

Gaussian filtered MSK (GMSK)

Contained percentage of total energy	spectral efficiency
90%	$1,45 \mathrm{Bit} / \mathrm{s} / \mathrm{Hz}$
99%	$0,97 \mathrm{Bit} / \mathrm{s} / \mathrm{Hz}$

How do we use all these spectral efficiencies?

Example: Assume that we want to use MSK to transmit $50 \mathrm{kbit} / \mathrm{sec}$, and want to know the required transmission bandwidth.

Take a look at the spectral efficiency table:

Contained percentage of total energy	spectral efficiency
90%	$1,29 \mathrm{Bit} / \mathrm{s} / \mathrm{Hz}$
99%	$0,85 \mathrm{Bit} / \mathrm{s} / \mathrm{Hz}$

The 90\% and 99\% bandwidths become:

$$
\begin{aligned}
& B_{90 \%}=50000 / 1.29=38.8 \mathrm{kHz} \\
& B_{99 \%}=50000 / 0.85=58.8 \mathrm{kHz}
\end{aligned}
$$

Summary

Modulation method	spectral efficiency for 90% of total energy Bit / s / Hz	spectral efficiency for 99% of total energy Bit / s / Hz	envelope variations w ratio of maximum and minimum amplitude		
BPSK	0,59	0,05	1		
BAM ($\alpha=0.5$)	1,02	0,79	∞		
$\begin{gathered} \hline \text { QPSK, OQPSK, } \\ \pi / 4 \text {-QPSK } \\ \hline \end{gathered}$	1,18	0,10	1		
MSK	1,29	0,85	1		
GMSK ($\mathrm{B}_{\mathrm{G}} \mathrm{T}=0.5$)	1,45	0,97	1		
QAM ($\alpha=0.5$)	2,04	1,58	∞		
OQAM ($\alpha=0.5$)	2,04	1,58	2.6		
FSK		$<1 /\left(2 f_{\mathrm{D}} T_{\mathrm{B}}\right)$	1		

Chapter 12

Demodulation and BER computation

OPTIMAL RECEIVER AND
 BIT ERROR PROBABILITY IN AWGN CHANNELS

Optimal receiver Transmitted and received signal

Transmitted signals

0 :

Channel

Optimal receiver A first "intuitive" approach

Assume that the following signal is received:

Comparing it to the two possible noise free received signals:

Optimal receiver Let's make it more measurable

To be able to better measure the "fit" we look at the energy of the residual (difference) between received and the possible noise free signals:

1 :

$$
\int\left|s_{1}(t)-r(t)\right|^{2} d t
$$

$$
\uparrow s_{0}(t)-r(\mathrm{t})
$$

$$
\underset{t \text { Wholther } t}{ } \int\left|s_{0}(t)-r(t)\right|^{2} d t
$$

This residual energy is much smaller. We assume that " 0 " was transmitted.

Optimal receiver The AWGN channel

The additive white Gaussian noise (AWGN) channel

$s(t)$ - transmitted signal
α - channel attenuation
$n(t)$ - white Gaussian noise
$r(t)$ - received signal

In our digital transmission system, the transmitted signal $s(t)$ would be one of, let's say M, different alternatives $s_{0}(t), s_{1}(t), \ldots, s_{\mathrm{M}-1}(t)$.

Optimal receiver The AWGN channel, cont.

For a received $r(t)$, the residual energy e_{i} for each possible transmitted alternative $s_{i}(t)$ is calculated as

$$
\begin{aligned}
& e_{i}=\int\left|r(t)-\alpha s_{i}(t)\right|^{2} d t=\int\left(r(t)-\alpha s_{i}(t)\right)\left(r(t)-\alpha s_{i}(t)\right)^{*} d t \\
&=\underbrace{\int|r(t)|^{2} d t}_{\text {Same for all } i}-\underbrace{2 \operatorname{Re}\left\{\alpha^{*} \int r(t) s_{i}^{*}(t) d t\right\}}+\underbrace{|\alpha|^{2} \int\left|s_{i}(t)\right|^{2} d t}_{\begin{array}{l}
\text { Same for all } i, \\
\text { if the transmitted }
\end{array}} \\
& \begin{array}{l}
\text { The residual energy is minimized by } \\
\text { signals are of } \\
\text { equal energy. }
\end{array}
\end{aligned}
$$

Optimal receiver The AWGN channel, cont.

The central part of the comparison of different signal alternatives is a correlation, that can be implemented as a correlator:

or a matched filter

where T_{s} is the symbol time (duration).

The real part of the output from either of these is sampled at $t=T_{\mathrm{s}}$

Optimal receiver Antipodal signals

In antipodal signaling, the alternatives (for " 0 " and " 1 ") are

$$
\begin{aligned}
& s_{0}(t)=\varphi(t) \\
& s_{1}(t)=-\varphi(t)
\end{aligned}
$$

This means that we only need ONE correlation in the receiver for simplicity:

Optimal receiver Orthogonal signals

In binary orthogonal signaling, with equal energy alternatives $s_{0}(t)$ and $s_{1}(t)$ (for " 0 " and " 1 ") we require the property:

$$
\left\langle s_{0}(t), s_{1}(t)\right\rangle=\int s_{0}(t) s_{1}^{*}(t) d t=0
$$

Optimal receiver Interpretation in signal space

Optimal receiver The noise contribution

Assume a 2-dimensional signal space, here viewed as the complex plane

Fundamental question: What is the probability that we end up on the wrong side of the decision boundary?

Optimal receiver Pair-wise symbol error probability

What is the probability of deciding s_{i} if s_{j} was transmitted?

We need the distance between the two symbols. In this orthogonal case:

$$
d_{j i}=\sqrt{{\bar{E}_{s}}^{2}+{\sqrt{E_{s}}}^{2}}=\sqrt{2 E_{s}}
$$

The probability of the noise pushing us across the boundary at distance $d_{j} / 2$ is

$$
\begin{aligned}
P\left(s_{j} \rightarrow s_{i}\right) & =Q\left(\frac{d_{j i} / 2}{\sqrt{N_{0} / 2}}\right)=Q\left(\sqrt{\frac{E_{s}}{N_{0}}}\right) \\
& =\frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E_{s}}{2 N_{0}}}\right)
\end{aligned}
$$

Optimal receiver The union bound

Calculation of symbol error probability is simple for two signals!
When we have many signal alternatives, it may be impossible to calculate an exact symbol error rate.

When s_{0} is the transmitted signal, an error occurs when the received signal is outside this polygon.

Optimal receiver Bit-error rates (BER)

EXAMPLES:

Bits/symbol
Symbol energy
1

2
E_{b}

$$
Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right) \quad Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
$$

$2 E_{\mathrm{b}}$

BER
$3 E_{\mathrm{b}}$
$4 E_{\mathrm{b}}$

3

4

$$
\approx \frac{2}{3} Q\left(\sqrt{0.87 \frac{E_{b}}{N_{0}}}\right) \approx \frac{3}{2} Q\left(\sqrt{\frac{E_{b, \text { max }}}{2.25 N_{0}}}\right)
$$

Gray coding is used when calculating these BER.

Optimal receiver Bit-error rates (BER), cont.

Optimal receiver - BER of QPSK

- Compute via union bound
- Pairwise error probability $Q\left(\sqrt{2 \gamma_{\mathrm{B}}}\right)$
- Symbol error probability $S E R \approx 2 Q\left(\sqrt{2 \gamma_{\mathrm{B}}}\right)$
- Bit error probability $B E R=Q\left(\sqrt{2 \gamma_{\mathrm{B}}}\right)$

Optimal receiver Where do we get E_{b} and N_{0} ?

Where do those magic numbers E_{b} and N_{0} come from?
The noise power spectral density N_{0} is calculated according to

$$
N_{0}=k T_{0} F_{0} \Leftrightarrow N_{0 \mid d B}=-204+F_{0 \mid d B}
$$

where F_{0} is the noise factor of the "equivalent" receiver noise source.

The bit energy E_{b} can be calculated from the received power C (at the same reference point as N_{0}). Given a certain data-rate d_{b} [bits per second], we have the relation

$$
E_{b}=C / d_{b} \Leftrightarrow E_{b \mid d B}=C_{\mid d B}-d_{b \mid d B}
$$

THESE ARE THE EQUATIONS THAT RELATE DETECTOR PERFORMANCE ANALYSIS TO LINK BUDGET CALCULATIONS!

BER for differential receiver

- Differential BPSK

$$
\Phi_{i}=\Phi_{i-1}+ \begin{cases}+\frac{\pi}{2} & b_{i}=+1 \\ -\frac{\pi}{2} & b_{i}=-1\end{cases}
$$

- BER for differentially detected BPSK:

$$
B E R=\frac{1}{2} \exp \left(-\gamma_{b}\right) .
$$

Noncoherent detection (1)

Slides for "Wireless Communications" © Edfors, Molisch, Tufvesson

Noncoherent detection (2)

- Error probability for noncoherent detection

$$
\begin{gathered}
B E R=Q_{\mathrm{M}}(a, b)-\frac{1}{2} I_{0}(a b) \exp \left(-\frac{1}{2}\left(a^{2}+b^{2}\right)\right) \\
\left.a=\sqrt{\frac{\gamma \mathrm{y}}{2}\left(1-\sqrt{1-|\rho|^{2}}\right.}\right) \quad b=\sqrt{\frac{y_{\mathrm{B}}}{2}}\left(1+\sqrt{1-|\rho|^{2}}\right)
\end{gathered}
$$

- For phase modulation, $|\rho|=1$, therefore $S N R=0$

BER IN FADING CHANNELS AND DISPERSION-INDUCED ERRORS

BER in fading channels (1)

We have (or can calculate) BER expressions for non-fading AWGN channels.

$$
p d f\left(\gamma_{b}\right)=\frac{1}{\overline{\gamma_{b}}} e^{-\gamma_{b} \overline{\gamma_{b}}}
$$

$$
\begin{array}{ll}
\gamma_{b} & --E_{b} / N_{0} \\
\overline{\gamma_{b}} & \text {-- average } E_{b} / N_{0}
\end{array}
$$

$$
B E R_{\text {Rayleigh }}\left(\overline{\gamma_{b}}\right)=\int_{0}^{\infty} B E R_{A W G N}\left(\gamma_{b}\right) \times p d f\left(\gamma_{b}\right) d \gamma_{b}
$$

BER in fading channels (2)

THIS IS A SERIOUS PROBLEM!

BER in fading channels (3)

- Coherent detection of antipodal signals

$$
\overline{B E R}=\frac{1}{2}\left[1-\sqrt{\frac{\overline{\gamma_{\mathrm{B}}}}{1+\overline{\gamma_{\mathrm{B}}}}}\right] \approx \frac{1}{4 \overline{\gamma_{\mathrm{B}}}}
$$

- Coherent detection of orthogonal signals

$$
\overline{B E R}=\frac{1}{2}\left[1-\sqrt{\frac{\overline{\gamma_{\mathrm{B}}}}{2+\overline{\gamma_{\mathrm{B}}}}}\right] \approx \frac{1}{2 \overline{\gamma_{\mathrm{B}}}}
$$

- Differential detection of antipodal signals

$$
\overline{B E R}=\frac{1}{2+\overline{\gamma_{\mathrm{B}}}} \approx \frac{1}{\overline{\gamma_{\mathrm{B}}}}
$$

- Differential detection of orthogonal signals

$$
\overline{B E R}=\frac{1}{2\left(1+\overline{\gamma_{\mathrm{B}}}\right)} \approx \frac{1}{2 \overline{\gamma_{\mathrm{B}}}}
$$

Alternative computation of BER

- Alternative representation of Q-function

$$
Q(x)=\frac{1}{\pi} \int_{0}^{\pi / 2} \exp \left(-\frac{x^{2}}{2 \sin ^{2} \theta}\right) d \theta
$$

- Example: SER of M-ary PSK in AWGN channel:

$$
S E R=\frac{1}{\pi} \int_{0}^{(M-1) \pi / M} \exp \left(-\frac{\gamma_{\mathrm{s}}}{\sin ^{2} \theta} \sin ^{2}(\pi / M)\right) d \theta
$$

- Averaged SER:

$$
\overline{S E R}=\frac{1}{\pi} \int_{0}^{(M-1) \pi / M} \int_{0}^{\infty} p d f_{\gamma}(\gamma) \exp \left(-\frac{\gamma_{\mathrm{s}}}{\sin ^{2} \theta} \sin ^{2}(\pi / M)\right) d \theta
$$

- This can be expressed in terms of the characteristic function of the fading distribution $M_{\gamma}(s)$

$$
\left.\overline{S E R}=\frac{1}{\pi} \int_{0}^{(M-1) \pi / M} \cdot M_{\gamma}\left(\frac{\gamma_{\mathrm{S}}}{\sin ^{2} \theta} \sin ^{2}(\pi / M)\right)\right) d \theta
$$

Doppler-induced errors

- Distortion on the channel causes irreducible errors (cannot be eliminated by increasing transmit power)
- Frequency dispersion:
- Due to Doppler effect
- Instantaneous frequency can be computed as

$$
f_{\text {inst }}(t)=\frac{\operatorname{Im}\left(r^{*}(t) \frac{d r(t)}{d t}\right)}{|r(t)|^{2}}
$$

- Large frequency shift in fading dips
- Resulting BER (for MSK)

$$
\overline{B E R}_{\text {Doppler }}=\frac{1}{2} \pi^{2}\left(v_{\max } T_{\mathrm{B}}\right)^{2}
$$

- Mostly relevant for low datarates

Errors induced by delay dispersion

- Delay dispersion causes intersymbol interference
- Average BER

$$
\overline{B E R}=K\left(\frac{S_{t}}{T_{\mathrm{B}}}\right)^{2}
$$

- Influenced by sampling instant

Errors induced by delay dispersion (2)

Normalized delay spread $\mathrm{S} \dagger / T_{\mathrm{B}} \quad$ Copyright: Prentice-Hall

Impact of filtering

Copyright: IEEE

Computation methods (1)

- Group delay method: distortion of signal phase is related to group delay

$$
\begin{aligned}
\Phi_{\mathrm{c}}(\omega) & =\Phi_{\mathrm{c}}(0)+\left.\omega \frac{\partial \Phi_{\mathrm{c}}}{\partial \omega}\right|_{\omega=0}+\left.\frac{1}{2} \omega^{2} \frac{\partial^{2} \Phi_{\mathrm{c}}}{\partial \omega^{2}}\right|_{\omega=0}+\ldots \ldots \\
& \approx \Phi_{\mathrm{c}}(0)-\omega T_{\mathrm{g}}
\end{aligned}
$$

- Statistics of group delay

$$
p d f_{T_{\mathrm{g}}}\left(T_{\mathrm{g}}\right)=\frac{1}{2 S_{\tau}} \frac{1}{\left[1+\left(T_{\mathrm{g}} / S_{\tau}\right)^{2}\right]^{3 / 2}}
$$

- ->

$$
B E R=\frac{4}{9}\left(\frac{S_{\tau}}{T_{\mathrm{B}}}\right)^{2} \approx \frac{1}{2}\left(\frac{S_{\tau}}{T_{\mathrm{B}}}\right)^{2} .
$$

Computation method (2)

- Quadratic form of Gaussian variables
- Formulate error event as

$$
D=A|X|^{2}+B|Y|^{2}+C X Y^{*}+C^{*} X^{*} Y<0
$$

- Canonical receiver

Computation method (3)

- Differentially-detected MSK

$$
X=r\left(t_{s}\right) Y=r\left(t_{s}-T\right)
$$

- Error condition is

$$
\operatorname{Re}\left\{b_{0} X Y^{*} \exp (-j \pi / 2)\right\}<0
$$

- BER can be computed as

$$
\overline{B E R}=\frac{1}{2}-\frac{1}{2} \frac{b_{0} \operatorname{Im}\left\{\rho_{X Y}\right\}}{\sqrt{\operatorname{Im}\left\{\rho_{X Y}\right\}^{2}+\left(1-\left|\rho_{X Y}\right|^{2}\right)}}
$$

Chapter 13

Diversity

Diversity arrangements Let's have a look at fading again

Illustration of interference pattern from above

Transmitter
\square Reflector

Diversity arrangements The diversity principle

The principle of diversity is to transmit the same information on M statistically independent channels.

By doing this, we increase the chance that the information will be received properly.

The example given on the previous slide is one such arrangement: antenna diversity.

Diversity arrangements General improvement trend

Diversity arrangements Some techniques

Spatial (antenna) diversity

> | We will focus on this |
| :---: |
| one today! |

Frequency diversity

Temporal diversity

(We also have angular and polarization diversity)

Spatial (antenna) diversity Fading correlation on antennas

Spatial (antenna) diversity Selection diversity

RSSI-driven selection diversity

RSSI = received signal strength indicator

Spatial (antenna) diversity Selection diversity, cont.

BER-driven selection diversity

Spatial (antenna) diversity Maximum ratio combining

Maximum ratio combining

Spatial (antenna) diversity

Equal gain combining

Antenna A

Antenna B

RX-filter

Spatial (antenna) diversity Performance comparison

Cumulative distribution of SNR

Comparison of SNR distribution for different number 0.1 of antennas M and two different diversity techniques.

SNR statistics for diversity receivers

- Selection combining: easiest to compute cdf

$$
c d f_{\gamma}(\gamma)=\left[1-\exp \left(-\frac{\gamma}{\bar{\gamma}}\right)\right]^{N_{\mathrm{r}}} .
$$

- Maximum ratio combining:

$$
p d f_{\gamma}(\gamma)=\frac{1}{\left(N_{\mathrm{r}}-1\right)!} \frac{\gamma^{N_{\mathrm{r}}-1}}{\bar{\gamma}^{N_{r}}} \exp \left(-\frac{\gamma}{\bar{\gamma}}\right) .
$$

BER of diversity receivers

- Classical computation method: average BER over distribution of SNR output

$$
\overline{S E R}=\int_{0}^{\infty} p d f_{\gamma}(\gamma) \operatorname{SER}(\gamma) d \gamma
$$

- Use SNR distribution from previous slides
- For MRC and large SNR

$$
\overline{B E R} \approx\left(\frac{1}{4 \bar{\gamma}}\right)^{N_{\mathrm{r}}}\binom{2 N_{\mathrm{r}}-1}{N_{\mathrm{r}}}
$$

Computation via moment-generating function

- BER in AWNG can be written as

$$
\operatorname{SER}(\gamma)=\int_{\theta_{1}}^{\theta_{2}} f_{1}(\theta) \prod_{i=1}^{N_{\mathrm{r}}} \exp \left(-\gamma_{n} f_{2}(\theta)\right) d \theta
$$

- Averaging over SNR distribution

$$
\begin{aligned}
\overline{S E R} & =\int d \gamma_{1} p d f_{1}\left(\gamma_{1}\right) \int d \gamma_{2 p d} p f_{\gamma_{2}}\left(\gamma_{2}\right) \ldots \int d \gamma_{N, p} p d f_{\gamma_{1}}\left(\gamma_{N_{N}}\right) \int_{\theta_{1}}^{\theta_{2}} d \theta f_{1}(\theta) \prod_{i=1}^{N_{F}} \exp \left(-\gamma_{n} f_{2}(\theta)\right) \\
& =\int_{\theta_{1}}^{\theta_{2}} d \theta f_{1}(\theta) \prod_{i=1}^{N_{1}} \int d \gamma_{p} p d f_{\gamma_{1}}\left(\gamma_{n}\right) \exp \left(-\gamma_{n} f_{2}(\theta)\right) \\
& =\int_{\theta_{1}}^{\theta_{2}} d \theta f_{1}(\theta) \prod_{i=1}^{N_{1}} M_{\gamma}\left(-f_{2}(\theta)\right) \\
& =\int_{\theta_{1}}^{\theta_{2}} d \theta f_{1}(\theta)\left[M_{r}\left(-f_{2}(\theta)\right)\right]^{N_{1}}
\end{aligned}
$$

Spatial (antenna) diversity Performance comparison, cont.

Comparison of 2ASK/2PSK BER for different number of antennas M and two different diversity techniques.

Spatial (antenna) diversity Errors due to signal distortion

Comparison of 2ASK/2PSK BER for different number of antennas M and two different diversity techniques.

normalized Doppler frequency $\mathrm{S}_{\dagger} / \mathrm{T}_{\mathrm{B}}$
Copyright: Prentice-Hall

Optimum combining in flat-fading channel

- Most systems interference limited
- OC reduces not only fading but also interference
- Each antenna can eliminate one interferer or give one diversity degree for fading reduction:
("zero-forcing").
- MMSE or decision-feedback gives even better results
- Computation of weights for combining

$$
\mathbf{w}_{\mathrm{opt}}=\mathbf{R}^{-1} \mathbf{h}_{\mathrm{d}}^{*} \quad \mathbf{R}=\sigma_{\mathrm{n}}^{2} \mathbf{I}+\sum_{k=1}^{K} E\left\{\mathbf{r}_{k}^{*} \mathbf{r}_{k}^{T}\right\}
$$

Performance of Optimum Combining

- Define channel matrix H .
$H_{k m}$ is transfer function for k-th user to m-th diversity antenna
- Error of BPSK, QPSK for one channel constellation bounded as

$$
B E R_{\text {static }} \leq \exp \left[-\boldsymbol{h}_{d}{ }^{H} \boldsymbol{R}_{n i}{ }^{-1} \boldsymbol{h}_{d}\right\rfloor
$$

- average behavior:

$$
B E R \leq[1+S N R]^{-(M-K)}
$$

2 interferers, optimum combining

From Winters 1984,

Chapter 14

Channel coding

Contents

- Overview
- Block codes
- Convolution codes
- Trellis-coded modulation
- Turbo codes and LDPC codes
- Fading channel and interleaving

OVERVIEW

Basic types of codes

Channel codes are used to add protection against errors in the channel.
It can be seen as a way of increasing the distance between transmitted alternatives, so that a receiver has a better chance of detecting the correct one in a noisy channel.

We can classify channel codes in two principal groups:

BLOCK CODES

Encodes data in blocks of k, using code words of length n.

CONVOLUTION CODES

Encodes data in a stream, without breaking it into blocks, creating code sequences.

Information and redundancy (1)

EXAMPLE

Is the English language protected by a code, allowing us to correct transmission errors?

When receiving the following sentence with errors marked by ' - ':

$$
\begin{array}{llllllll}
\text { "D- } & \text { n-t } & \text { w-rr- } & -b--t & ---r & d-f f-c u l t--s & -n & M-t h-m-t-c s . ~ \\
- & c-n & -s s-r- & --- & m-n- & -r- & \text { st-II } & \text { gr--t-r." }
\end{array}
$$

it can still be "decoded" properly.
What does it say, and who is quoted?
There is something more than information in the original sentence that allows us to decode it properly, redundancy.

Redundancy is available in almost all "natural" data, such as text, music, images, etc.

Information and redundancy (2)

Electronic circuits do not have the power of the human brain and needs more structured redundancy to be able to decode "noisy" messages.

> "Pure information"
> without redundancy

Illustration of code words

Assume that we have a block code, which consists of k information bits per n bit code word ($n>k$).

Since there are only 2^{κ} different information sequences, there can be only 2^{k} different code words.

Illustration of decoding

\times Received word

Distances

Two common ones:
Hamming distance
Measures the number of bits being different between two binary words.

Used for binary channels with random bit errors.

Used for AWGN channels.

Coding gain

When applying channel codes we decrease the E_{b} / N_{0} required to obtain some specified performance (BER).

BLOCK CODES

Channel coding Linear block codes

The encoding process of a linear block code can be written as

$$
\vec{x}=\underline{G} \vec{u}
$$

where
$\vec{U} \quad$ k-dimensional information vector
G $\quad \mathrm{n} \times \mathrm{k}$-dimensional generator matrix
$\vec{X} \quad \mathrm{n}$ - dimensional code word vector

Channel coding Some definitions

Code rate:

$$
R=\frac{\text { bits in }}{\text { bits out }}=\frac{k}{n}
$$

Modulo-2 arithmetic (XOR):

Minimum distance of code:

$$
\begin{aligned}
d_{\min } & =\min _{i \neq j} d\left(\vec{x}_{i}, \vec{x}_{j}\right) \\
& =\min _{i \neq j} w\left(\vec{x}_{i}+\vec{x}_{j}\right)
\end{aligned}
$$

$$
\vec{x}_{i}+\vec{x}_{j}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Hamming weight:

$$
w(\vec{x})=\text { number of ones in } \vec{x}
$$

Hamming distance:
$d\left(\vec{x}_{i}, \vec{x}_{j}\right)=w\left(\vec{x}_{i}+\vec{x}_{j}\right)$

Channel coding Encoding example

For a specific $(\mathrm{n}, \mathrm{k})=(7,4)$ code we encode the information sequence 1011 as
$[\begin{array}{lll}{\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1\end{array}\right]} & \left.\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0\end{array}\right]\right\} \text { parity bits. }\end{array} \underbrace{\text { Systematic bits }}$

Generator matrix

Channel coding Encoding example, cont.

Encoding all possible 4 bit information sequences gives:

Information	Code word										
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1	1	1	1	4
0	0	1	0	0	0	1	0	0	1	1	3
0	0	1	1	0	0	1	1	1	0	0	3
0	1	0	0	0	1	0	0	1	0	1	3
0	1	0	1	0	1	0	1	0	1	0	3
0	1	1	0	0	1	1	0	1	1	0	4
0	1	1	1	0	1	1	1	0	0	1	4
1	0	0	0	1	0	0	0	1	1	0	3
1	0	0	1	1	0	0	1	0	0	1	3
1	0	1	0	1	0	1	0	1	0	1	4
1	0	1	1	1	0	1	1	0	1	0	4
1	1	0	0	1	1	0	0	0	1	1	4
1	1	0	1	1	1	0	1	1	0	0	4
1	1	1	0	1	1	1	0	0	0	0	3
1	1	1	1	1	1	1	1	1	1	1	7

This is a $(7,4)$ Hamming code, capable of correcting one bit error.

Channel coding Error correction capability

$$
t=\left\lfloor\frac{d_{\min }-1}{2}\right\rfloor
$$

From Ericsson radio school

Channel coding Performance and code length

CONVOLUTION CODES

Channel coding Encoder structure

Channel coding Encoding example

Input State Output Next state

0	00	000	00
1	00	111	10
0	01	001	00
1	01	110	10
0	10	011	01
1	10	100	11
0	11	010	01
1	11	101	11

We usually start the encoder in the all-zero state!

Channel coding Encoding example, cont.

We can view the encoding process in a trellis created from the table on the previous slide.

Channel coding Termination

Channel coding A Viterbi decoding example

Received sequence:

Channel coding Surviving paths

TRELLIS-CODED MODULATION

Principle of TCM

- Goal: improve BER performance while leaving the bandwidth requirement unchanged
- "Conventional" coding introduces redundancy, and therefore increases the requirement for bandwidth
- Therefore, TCM increases the constellation size of the modulation, while at the same time using a convolutional code

Trellis-coded modulation (1)

- Simple example: TCM with 8 -PSK and rate $2 / 3$ coding

Trellis encoder for 8PSK-TCM

Trellis-coded modulation (2)

Signal-space diagram
8PSK: $\mathrm{AlC}_{2} \mathrm{C}_{1} \mathrm{C}_{0}$

8PSK signal constellation diagram

Admissible transitions

Infobits/8PSK-Symbol

state transition diagram
Copyright: B. Mayr

TCM: BER computation (1)

Trellis diagram for 8PSK-TCM

TCM: BER computation (2)

- Asymptotic coding gain of 3 dB
- Euclidean distance is 8 E , compared to 4 E for QPSK

Set partitioning

TURBO CODES AND LDPC CODES

Turbocoders

- Generates long codewords by
- encoding data with two different convolutional encoders
- for each of the encoders, data are interleaved with different interleavers

Decoding of turbocodes

- Iterative decoding
- Two separate decoders (corresponding to the two convolutional encoders) that exchange information
- Quantity of interest is the log-likelihood ratio

$$
\log \left[\frac{\operatorname{Pr}\left(b_{i}=+1 \mid x\right)}{\operatorname{Pr}\left(b_{i}=-1 \mid x\right)}\right]
$$

Block diagram of turbo decoder

Feedback loop

Performance of turbo codes

Principle of LDPC codes

- LDPC: low density parity check codes
- Block codes with large block length
- Defined by the parity-check matrix H, not the generator matrix

Construction of parity-check matrix

1. Divide matrix horizontally into p submatrices
2. Put a " 1 " into each column of the submatrix. Make sure that there are q "1"s per row
$\left[\begin{array}{llllllllllllllllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]$
3. Let other submatrices be column permutations of first submatrix
$\mathbf{H}=\left[\begin{array}{llllllllllllllllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

Encoding of bits

- Generator matrix has to be computed
- First step:

$$
\widetilde{\mathbf{H}}=\left(\begin{array}{ll}
-\mathbf{P}^{T} & \mathbf{I}
\end{array}\right)
$$

- Second step: generator matrix is

$$
\mathbf{G}=\left(\begin{array}{ll}
\mathbf{I} & \mathbf{P}
\end{array}\right)
$$

Decoding: Tanner graph

- Method for iterative decoding
- Represent code in a Tanner graph (bipartite graph)

Check nodes

Variable nodes
Tanner graph for parity check matrix $H=\left[\begin{array}{llll}1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1\end{array}\right]$

Decoding: step-by-step procedure

1. Variable nodes decide what they think they are, given external evidence only

$$
\mu_{i, j}^{(0)}=0, \text { for all } i \quad \lambda_{i, j}^{(0)}=\left(2 / \sigma_{n}^{2}\right) r_{j}, \text { for all } j
$$

2. Constraint nodes compute what they think variable nodes have to be

$$
\mu_{i, j}^{(I)}=2 \tanh ^{-1}\left(\prod_{k \in A(i)-j} \tanh \left(\frac{\left(x_{i k}^{(1)}\right.}{2}\right)\right)
$$

$A(i)-j$ is "all the members of ensemble $A(i)$ with the exception of j "
3. Update opinion of what variable nodes have to be

$$
\lambda_{i, j}^{(l)}=\left(2 / \sigma_{n}^{2}\right) r_{j}+\sum_{k \in B(j)-i} \mu_{\mathrm{k}, \mathrm{j}}^{(1)}
$$

$B(j)-i$ is "all variable nodes that connect to the $j-$ th constraint node, with the exception of i."
4. compute the pseudoposterior probabilities that a bit is 1 or 0

$$
L_{j}=\left(2 / \sigma_{n}^{2}\right) r_{j}+\sum_{i} \mu_{\mathrm{i}, \mathrm{j}}^{(\mathrm{l})},
$$

5. If codeword has syndrome 0 , stop iteration; otherwise goto 2

FADING CHANNELS AND INTERLEAVING

Channel coding Distribution of low-quality bits

Without interleaving

Fading dip gives many
low-quality bits in
the same code word

Code words

With interleaving

With interleaving the fading dip spreads more evenly across code words

Code words

Channel coding Block interleaver

Channel coding Interleaving - BER example

BER of a $R=1 / 3$ repetition code over a Rayleigh-fading channel, with and without interleaving. Decoding strategy: majority selection.

Summary

- Channel coding is used to improve error performance
- For a fixed requirement, we get a coding gain that translates to a lower received power requirement.
- The two main types of codes are block codes and convolution codes
- Depending on the channel, we use different metrics to measure the distances
- Decoding of convolution codes is efficiently done with the Viterbi algorithm
- In fading channels we need interleaving in order to break up fading dips (but causes delay)

Chapter 16

Equalization

Contents

- Inter-symbol interference
- Linear equalizers
- Decision-feedback equalizers
- Maximum-likelihood sequence estimation

INTER-SYMBOL INTERFERENCE

Inter-symbol interference - Background

Modeling of channel impulse response

What we have used so far (PAM and optimal receiver):

Modeling of channel impulse response

We can create a discrete time equivalent of the "new" system:

where we can say that $F(z)$ represent the basis pulse and channel, while $F^{*}\left(z^{-1}\right)$ represent the matched filter. (This is an abuse of signal theory!)
We can now achieve white noise quite easily, if (the not unique) $F(z)$ is chosen wisely ($F^{*}\left(z^{-1}\right)$ has a stable inverse) :

The discrete-time channel model

With the application of a noise-whitening filter, we arrive at a discrete-time model

where we have ISI and white additive noise, in the form

$$
u_{k}=\sum_{j=0}^{L} f_{j} c_{k-j}+n_{k}
$$

The coefficients f_{j} represent the causal impulse response of the discrete-time equivalent of the channel $F(z)$, with an ISI that extends over \angle symbols.

Channel estimation

training sequence

region for measurement of impulse response

LINEAR EQUALIZER

Principle

The principle of a linear equalizer is very simple: Apply a filter $E(z)$ at the receiver, mitigating the effect of ISI:

Now we have two different strategies:

1) Design $E(z)$ so that the ISI is totally removed

Zero-forcing
2) Design $E(z)$ so that we minimize the mean squared-error of $\varepsilon_{k}=c_{k}-c_{k}$

Zero-forcing equalizer

MSE equalizer

The MSE equalizer is designed to minimize the error variance

DECISION-FEEDBACK EQUALIZER

DFE - Principle

Zero-forcing DFE

In the design of a ZF-DFE, we want to completely remove all ISI before the detection.

This enforces a relation between the $E(z)$ and $D(z)$, which is (we assume that we make correct decisions!)

$$
F(z) E(z)-D(z)=1
$$

MSE-DFE

MAXIMUM-LIKELIHOOD SEQUENCE ESTIMATION

Principle

"noise free signal alternative"

$$
u_{m}^{N F}=\sum_{j=0}^{L} f_{j} c_{m-j}
$$

The squared Euclidean distance (optimal for white Gaussian noise) to the received sequence $\left\{u_{m}\right\}$ is

$$
d^{2}\left(\left\{u_{m}\right\},\left\{u_{m}^{N F}\right\}\right)=\sum_{m}\left|u_{m}-u_{m}^{N F}\right|^{2}=\sum_{m}\left|u_{m}-\sum_{j=0}^{L} f_{j} c_{m-j}\right|^{2}
$$

The MLSE decision is then the sequence of symbols $\left\{c_{m}\right\}$ minimizing this distance

$$
\left\{\hat{c}_{m}\right\}=\underset{\left\{c_{m}\right\}}{\arg \min } \sum_{m}\left|u_{m}-\sum_{j=0}^{L} f_{j} c_{m-j}\right|^{2}
$$

The Viterbi-equalizer

Let's use an example to describe the Viterbi-equalizer.
Discrete-time channel:

Further, assume that our symbol alphabet is -1 and +1 (representing the bits 0 and 1 , respectively).

The Viterbi-equalizer (2)

Transmitted:

VITERBI DETECTOR

Detected sequence: $1 \quad 1 \quad-1$ -1

1
-1

Summary

- Linear equalizers suffer from noise enhancement.
- Decision-feedback equalizers (DFEs) use decisions on data to remove parts of the ISI, allowing the linear equalizer part to be less "powerful" and thereby suffer less from noise enhancement.
- Incorrect decisions can cause error-propagation in DFEs, since an incorrect decision may add ISI instead of removing it.
- Maximum-likelihood sequence estimation (MLSE) is optimal in the sense of having the lowest probability of detecting the wrong sequence.
- Brut-force MLSE is prohibitively complex.
- The Viterbi-equalizer (detector) implements the MLSE with considerably lower complexity.

Chapter 17

Multiple access

Contents

- Interference and spectrum efficiency
- Frequency-division multiple access (FDMA)
- Time-division multiple access (TDMA)
- Packet radio

Freq.-division multiple access (FDMA)

Time-division multiple access (TDMA)

PACKET RADIO

Principle and application

- Data are broken into packets
- Each packet has to fight for its own resources
- Each packet can go from TX to RX via different relays
- Used for, e.g.,
- Wireless computer networks: internet is packet radio by definition
- Sensor networks: routing over different relay nodes gives better reliability
- Voice over IP: allows to have one consistent MA principle for data and voice

ALOHA (1)

- Basic principle: send out data packets whenever TX has them, disregarding all other TXs
- When collision occurs, packet is lost

ALOHA (2)

- Probability that there are n packets within time duration t

$$
\operatorname{Pr}(n, t)=\frac{\left(\lambda_{\mathrm{p}}\right)^{n} \exp \left(-\lambda_{\mathrm{p}} t\right)}{n!}
$$

where λ_{p} is the packet rate of arrival

- Probability of collision

$$
\operatorname{Pr}(0, t)=\exp \left(-\lambda_{p} t\right)
$$

- Total throughput: $\lambda_{\mathrm{p}} T_{\mathrm{p}} \exp \left(-2 \lambda_{\mathrm{p}} T_{\mathrm{p}}\right)$
- Maximum throughput: 1/(2e)
- Slotted ALOHA: all packets start at certain discrete times

Carrier sense multiple access

- Principle: first determine whether somebody else transmits, send only when channel is free
- Why are there still collisions?
- Delays are unavoidable: system delay and propagation delay
- Collision, when there is a signal on the air, but device cannot sense it, because (due to delay) it has not reached it yet
- What does system do when it senses that channel is busy?
- WAIT
- Different approaches to how long it should wait

Performance comparison

DUPLEXING

DUPLEX Frequency-division Duplex (FDD)

FDD gives a more complex solution (the duplex filter).

Can be used for continuous transmission.

Examples: Nodic Mobile Telephony (NMT), Global System for Mobile communications (GSM), Wideband CDMA (WCDMA)

DUPLEX Time-division duplex (TDD)

TDD gives a low complexity solution (the duplex switch).

Cannot be used for continuous transmission.

Examples: Global System for Mobile communications (GSM), Wideband CDMA (WCDMA)

INTERFERENCE AND SPECTRUM EFFICIENCY

Interference and spectrum efficiency Noise and interference limited links

Interference and spectrum efficiency Cellular systems

$$
N_{\text {cluster }}=\frac{(D / R)^{2}}{3}
$$

Interference and spectrum efficiency Cellular systems, cont.

Cluster size: $N_{\text {cluster }}=4$

Cluster size: $N_{\text {cluster }}=13$

Copyright: Ericsson

Interference and spectrum efficiency Cellular systems, cont.

Where do we get the
necessary D / R ?

$$
\frac{C}{I}=\frac{P_{T X} d_{0}^{-\eta}}{\sum_{i=1}^{6} P_{T X} d_{i}^{-\eta}}>\frac{P_{T X} R^{-\eta}}{\sum_{i=1}^{6} P_{T X}(D-R)^{-\eta}}=\frac{1}{6}\left(\frac{R}{D-R}\right)^{-\eta}
$$

Interference and spectrum efficiency Cellular systems, cont.

Assume now that we have a transmission system, which requires $(C /)_{\text {min }}$ to operate properly. Further, due to fading and requirements on outage we need a fading margin M.

Using our bound
we can solve for a
"safe" D / R by requiring
we can solve for a
"safe" D / R by requiring

$$
\frac{C}{I}>\frac{1}{6}\left(\frac{R}{D-R}\right)^{-\eta}
$$

$$
\frac{1}{6}\left(\frac{R}{D-R}\right)^{-\eta} \geq M\left(\frac{C}{I}\right)_{\min }
$$

We get

$$
\frac{D}{R} \geq\left(6 M\left(\frac{C}{I}\right)_{\min }\right)^{1 / \eta}+1
$$

Interference and spectrum efficiency Cellular systems, cont.

TDMA systems, like GSM

Analog systems, like NMT

Interference and spectrum efficiency Cellular systems, cont.

Erlang-B

Relation between blocking probability and offered traffic for different number of available speech channels in a cell.

Chapter 18

Spread Spectrum

PRINCIPLES OF SPREAD SPECTRUM

Spread spectrum for multiple access

Single Carrier

The traditional way

Spread Spectrum Techniques

Spread Spectrum Techniques

FREQUENCY HOPPING

Frequency-Hopping Spread Spectrum FHSS

Frequency-Hopping Spread Spectrum FHSS

FH codes (1)

FH codes (2)

|||| ms $\boldsymbol{m}^{\text {m }}$

DIRECT SEQUENCE SPREAD SPECTRUM

Direct-Sequence Spread Spectrum DSSS (1)

Information signal
DSSS signal
Spreading

Users/channels are separated by using different spreading codes.

Direct-Sequence Spread Spectrum DSSS (2)

DSSS signal
Information signal

Despreading

Spreading code

Code-division multiple access (CDMA)

We want codes with low cross-correlation between the codes since the cross-talk between "users" is determined by it.

Code N

Impact of delay dispersion

- CDMA spreads signals over larger bandwidth -> delay dispersion has bigger impact.
- Two effects:
- Intersymbol interference: independent of spreading; needs to be combatted by equalizer
- Output of despreader is not impulse, but rather an approximation to the impulse response
- Needs Rake receiver to collect all energy

Rake receivers

Despreading becomes a bit more complicated

... but we gain frequency diversity.

Code families (1)

- Ideal goals:
- Autocorrelation function is delta impulse

$$
A C F(i)= \begin{cases}M_{\mathrm{C}} & \text { for } i=0 \\ 0 & \text { otherwise }\end{cases}
$$

- Crosscorrelation function should be zero

$$
C C F_{j, k}(t)=0 \quad \text { for } j \neq k
$$

- CCF properties should be (approx.) independent of relative shift between users

Code families (2)

Code families (3)

- Kasami-codes:
- Larger family of codes that trades of number of codes vs. ACF and CCF properties
- Gold sequences
- Overview of results (for length 255):

Sequence	Number of codes		Maximum CCF	
PN-Sequence	$2^{N_{\mathrm{reg}}}-1$	255		
Gold	$2^{N_{\mathrm{reg}}}+1$	257	$\approx-3 N_{\mathrm{reg}} / 2+1.5$	-10.5 dB
S-Kasami	$2^{N_{\mathrm{reg}} / 2}$	16	$\approx-3 N_{\mathrm{reg}} / 2$	-12 dB
L-Kasami	$2^{N_{\mathrm{reg}} / 2}\left(2^{N_{\mathrm{reg}}}+1\right)$	4112	$\approx-3 N_{\mathrm{reg}} / 2+3$	-9 dB
VL-Kasami	$2^{N_{\mathrm{reg}} / 2}\left(2^{N_{\mathrm{reg}}}+1\right)^{2}$	10^{6}	$\approx-3 N_{\mathrm{reg}} / 2+6$	-6 dB

Orthogonal codes

- Codes with perfect orthogonality are possible, but only for perfectly synchronized users
- Walsh-Hadamard codes:
- Size 2×2

$$
\mathbf{H}_{\text {had }}^{(1)}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

- Larger sizes: recursion

$$
\mathbf{H}_{\text {had }}^{(n+1)}=\left(\begin{array}{cc}
\mathbf{H}_{\text {had }}^{(n)} & \mathbf{H}_{\text {had }}^{(n)} \\
\mathbf{H}_{\text {had }}^{(n)} & \overline{\mathbf{H}}_{\text {had }}^{(n)}
\end{array}\right)
$$

Orthogonal Variable Spreading Factor (OVSF) codes

- When different spreading factors are needed

MULTIUSER DETECTION

Principle of multiuser detection

- Conventional approach: treat interference like noise
- However: interference has structure that can be exploited

Linear MUD

- Receiver structure

- Zero-forcing: $\mathbf{T}=\mathbf{R}^{-1}$
- Drawback: noise enhancement
- MMSE: $\mathbf{T}=\left[\mathbf{R}^{-1}+N_{0} \mathbf{I}\right]^{-1}$

Nonlinear MUD (1)

- Multiuser MLSE:
- optimally detect transmit sequences of all users
- Number of states in trellis grow exponentially with number of users
- Too complex for practical implementation
- Serial Interference cancellation:
- Detect strongest user first; subtract its impact from signal, then detect second strongest,...
- Drawback: error propagation

Nonlinear MUD (2)

- Parallel interference cancellation:
- Detect all users at once; subtract part of their impact from signal, then repeat this

TIME HOPPING IMPULSE RADIO

Time Hopping

- Train of pulses

- $\mathrm{T}_{\text {Pui }} \sim \mathrm{T}_{\mathrm{f}} / 100$
- PN sequence $\left\{c_{j}\right\}$, NP code $=N_{p}$ pulses, T_{c} : dither time

$$
C_{j .} T_{c} \quad C_{j+1 .} T_{c} \quad C_{j+2 .} T_{c}
$$

Interference Suppression

- Other impulse radio sources:
- Relative delay of users cannot be influenced
- Different users use different hopping codes
- No "catastrophic collision" possible

User 1
User 2

- Narrowband interference
- Receiver "sees" it only for duration of pulse
- Suppression by factor Tf/Tp

Summary

- The available radio resource is shared among users in a multiple access scheme.
- When we apply a cellular structure, we can reuse the same channel again after a certain distance.
- In cellular systems the limiting factor is interference.
- For FDMA and TDMA the tolerance against interference determines the possible cluster size and thereby the amount of resources available in each cell.
- For CDMA systems, we use cluster size one, and the number of users depends on code properties and the capacity to perform interference cancellation (multi-user detection).

Chapter 19

Orthogonal Frequency Domain Multiplexing

Contents

- Principle and motivation
- Analogue and digital implementation
- Frequency-selective channels: cyclic prefix
- Channel estimation
- Peak-to-average ratio
- Inter-channel interference
- Adaptive modulation
- Multi-carrier CDMA

PRINCIPLE, MOTIVATION AND BASIC IMPLEMENTATION

Principle (1)

- For very high data rates, equalization and Rake reception becomes difficult
- Important quantity: product of maximum excess delay and system bandwidth
- Especially critical for wireless LANs and PANs
- Solution:
- transmit multiple data streams with lower rates on several carriers
- Have carriers multiplexed in the most efficient possible way:
- Signals on the carriers can overlap and stay orthogonal

Principle (2)

- How close can we space the carriers?

$$
f_{n}=n W / N \quad W=N / T_{\mathrm{S}}
$$

- Carriers are still orthogonal

$$
c_{n} c_{k} \int_{i T_{\mathrm{S}}}^{(i+1) T_{\mathrm{S}}} \exp \left(j 2 \pi f_{n} t\right) \exp \left(-j 2 \pi f_{k} t\right) d t=c_{n} c_{k} \delta_{n k}
$$

FDMA

> Carrier spacing W/N

OFDM

Analogue vs. digital implementation

- Analogue implementation

Transmitter
Channel
Receiver

$$
(\mathrm{k}-1) \mathrm{T}
$$

a)

- Digital implementation

Why can we use an IFFT?

- Transmit signal is

$$
s(t)=\sum_{i=-\infty}^{\infty} s_{i}(t)=\sum_{i=-\infty}^{\infty} \sum_{n=0}^{N-1} c_{n, i} g_{n}\left(t-i T_{\mathrm{S}}\right)
$$

- With basis pulse

$$
g_{n}(t)= \begin{cases}\frac{1}{\sqrt{T_{\mathrm{S}}}} \exp \left(j 2 \pi n \frac{t}{T_{\mathrm{S}}}\right) & \text { for } 0<t<T_{\mathrm{S}} \\ 0 & \text { otherwise }\end{cases}
$$

- Transmit signal sampled at $t_{k}=k T_{\mathrm{S}} / N$

$$
s_{k}=s\left(t_{k}\right)=\frac{1}{\sqrt{T_{\mathrm{s}}}} \sum_{n=0}^{N-1} c_{n, 0} \exp \left(j 2 \pi n \frac{k}{N}\right) .
$$

- This is the definition of an IFFT

Frequency-selective channels

- Cyclic prefix, i.e., repeat last samples at beginning of symbol
- Converts linear to circular convolution

Performance in frequency-selective channels

Performance in frequency-selective channels

 (2)

Performance in frequency-selective channels

 (3)- How to improve performance?
- adaptive modulation (different signal alphabets in different subcarriers)
- spreading the signal over all tones (multicarrier CDMA)
- Coding across different tones

ADVANCED IMPLEMENTATION ISSUES

Channel estimation (1)

- Easiest approach: dedicated pilot symbols
- Estimated channel gain on subchannel n

$$
h_{n, i}^{\mathrm{LS}}=r_{n, i} / c_{n, i}
$$

where r is the received signal and c the transmit signal

- Performance improvement:
- Channels on subcarriers are correlated
- Exploit that knowledge for noise averaging
$\mathbf{h}_{i}^{\mathrm{LMMSE}}=R_{h h^{\mathrm{LS}} R_{h^{\mathrm{LS}} h^{\mathrm{LS}}}^{-1} \mathbf{h}_{i}^{\mathrm{LS}}}$
$R_{h h^{\mathrm{Ls}}}$: covariance matrix between channel gains and least-squares estimate of channel gains,
$R_{h^{L S} h^{L S}}$: autocovarance matrix of least-squares estimates

Channel estimation (2)

- Reduction of overhead by scatterered pilots

Effect of PAR problem

- Increases BER

Remedies for the PAR problem (1)

- Backoff

Remedies for the PAR problem (2)

- Residual cutoff results in spectral regrowth

Remedies for the PAR problem (3)

- Coding for PAR reduction
- Phase adjustments
- Cannot guarantee certain PAR

Remedies for PAR problem (4)

- Correction by multiplicative factor
- Simplest case: clipping
- More gentle: Gaussian functions

$$
\widehat{s}(t)=s(t)\left[1-\sum_{n} \max \left(0, \frac{\left|\left.\right|_{k}\right|-A_{0}}{\left|s_{k}\right|}\right) \exp \left(-\frac{t^{2}}{2 \sigma_{\mathrm{t}}^{2}}\right)\right]
$$

- Correction by additive factor

Intercarrier interference (ICI)

- Intercarrier interference occurs when subcarriers are not orthogonal anymore

Nominal carrier spacing W/N

Remedies for ICI (1)

- Optimize the carrier spacing and symbol duration
- Larger subcarrier spacing leads to smaller ICI
- Larger spacing leads to shorter symbol duration: more sensitive to ICI; cyclic prefix makes it less spectral efficient
- Maximize
- Optimum choice of OFDM basis signals

Remedies for ICI (2)

- Self-interference cancellation
- Frequency-domain equalizers

Waterfilling

- To optimize capacity, different powers should be allocated to the subcarriers
- Waterfilling:

$$
P_{n}=\max \left(0, \varepsilon-\frac{\sigma_{\mathrm{n}}^{2}}{\left|\alpha_{n}\right|^{2}}\right) \quad \text { with } \quad P=\sum_{n=1}^{N} P_{n}
$$

MUTLICARRIER CDMA (MC-CDMA) AND
 SINGLE-CARRIER FREQUENCYDOMAIN EQUALIZATION (SC-FDE)

And now for the mathematics...

- A code symbol c is mapped onto a transmit vector, by multiplication with spreading code p.
- For parallel transmission of symbols: a vector of transmit symbols c is mapped by multiplication with a spreading matrix P that consists of the spreading codes for the different symbols

$$
\widetilde{\mathbf{c}}=\mathbf{P c} \quad \mathbf{P}=\left[\mathbf{p}_{1} \mathbf{p}_{2} \ldots \ldots . \mathbf{p}_{N}\right]
$$

- Symbol spreading is undone at the receiver

$$
\begin{aligned}
& \widetilde{\mathbf{r}}=\mathbf{H} \widetilde{\mathbf{c}}+\mathbf{n} \\
& \begin{aligned}
\mathbf{P}^{\dagger} \mathbf{H}^{-1} \widetilde{\mathbf{r}} & =\mathbf{P}^{\dagger} \mathbf{H}^{-1} \mathbf{H P c}+\mathbf{P}^{\dagger} \mathbf{H}^{-1} \mathbf{n} \\
& =\mathbf{c}+\widetilde{\mathbf{n}}
\end{aligned}
\end{aligned}
$$

Transceiver structure for MC-CDMA

SC-FDE Principle

- Move the IFFT from the TX to the RX

Chapter 20

Multiple antenna systems

Definitions

- What are smart antennas and MIMO systems?

A MIMO system consists of several antenna elements, plus adaptive signal processing, at both transmitter and receiver, the combination of which exploits the spatial dimension of the mobile radio channel. A smart antenna system is a system that has multiple antenna elements only at one link end,

Channel Receiver

TDMA System with SFIR (1)

User cell
Interfering cell 1
Interfering cell 2

TDMA System with SFIR (2)

Conventional cell pattern

Spatial filtering

TDMA System with SDMA

2G (single rate) CDMA System

3G (Multirate) CDMA System

Temporal reference (TR) algorithms

Basic idea:

- Choose antenna weights so that deviation of array output from transmit signal is minimized
- Needs training sequence

Training phase

Detection phase

Spatial reference (SR) algorithms

- Determine DOAs, then do beamforming
- A priori information for DOA estimation: array structure
- Algorithms for DOA estimation:
- Fourier analysis
- Spectrum-based estimators
- Parametric estimators

DOA-Estimation

Beamforming

SR classification

DOA estimation

SR algorithms

parametric

spectral-based

subspace-based beamforming methods

MUSIC

Blind Algorithms - Definition (1)

- Blind Estimation = Identification of the system parameters $h(t)$ or input $s(t)$ using only the output information (i.e. without access to the input sequence).
- Applications:
- equalisation
- speech processing
- image processing
- etc.

Blind Algorithms - Definition (2)

Blind Algorithms - Identification problem

- separate or joint estimation of H and S :
- space(-time) filter or space-time detector

Why downlink processing ?

Mobile Feedback based Beamforming

MIMO SYSTMES

MIMO Transmission - Generic Structure

MIMO Transmission - System Model

- Basic system model

$$
\underbrace{\mathbf{Y}}_{n_{R} \times T}=\underbrace{\mathbf{H}}_{n_{R} \times n_{T}} \underbrace{\mathbf{X}}_{n_{T} \times T}+\underbrace{\mathbf{N}}_{n_{R} \times T}=\underbrace{\mathbf{H}}_{n_{R} \times n_{T}} \underbrace{\mathbf{V}}_{n_{T} \times Q} \underbrace{\mathbf{P}}_{Q \times Q} \underbrace{\mathbf{S}}_{Q \times T}+\underbrace{\mathbf{N}}_{n_{R} \times T}
$$

- S... ST modulation matrix containing the transmitted signals of Q transmission streams during T symbol periods
- $\mathrm{P} \ldots$... power allocation matrix $\mathrm{P}=\operatorname{diag}\left(P_{1}^{1 / 2}, \ldots, P_{Q}^{1 / 2}\right)$ for Q streams
- V... linear precoding matrix (e.g. for beamforming purpose)
- H... MIMO channel matrix $\left(n_{R} \times n_{T}\right)$ - assumed to be constant during T symbol periods
- Y... received signal from n_{R} antennas during T symbols
- X... TX signal from n_{T} antennas during T symbol periods
- N... receiver noise at n_{R} antennas during T symbols

MIMO SYSTMES WITH CSI AT TRANSMITTER

Decomposing the instantaneous channel

- Deterministic instantaneous channel can be decomposed via SVD:

$$
\begin{aligned}
\boldsymbol{H} & =\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{\boldsymbol { V } ^ { \mathrm { H } }} \\
& =\sum_{i=1}^{\min \left(n_{\left.R_{R}, n_{\mathrm{T}}\right)}\right.} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{\mathrm{H}}
\end{aligned}
$$

- Equivalent to $\min \left(n_{\mathrm{R}}, n_{\mathrm{T}}\right)$ independent parallel channels with powers λ_{i}

Transmitting on eigenmodes

- Transmit precoding is matched to Tx eigenmodes:

$$
\boldsymbol{y}=\boldsymbol{H} \underbrace{\boldsymbol{V}}_{\text {precoding power signal }} \underbrace{\boldsymbol{S}}_{\boldsymbol{P}}
$$

- The modulation matrix is just a serial to parallel conversion

$$
\boldsymbol{s}=\left[\begin{array}{c}
S_{1} \\
S_{2} \\
\vdots \\
S_{\min \left(n_{R}, n_{T}\right)}
\end{array}\right]
$$

Waterfilling

- Capacity formula for unequal power distribution

$$
C=\log _{2}\left(\operatorname{det}\left[\boldsymbol{I}_{n_{R}}+\frac{\gamma}{n_{T}} \boldsymbol{H} \boldsymbol{P} \boldsymbol{H}^{H}\right]\right) \text { bits } / s / H z
$$

Performance

SNR $=10 \mathrm{~dB}$
Number of receive antennas: 8

Diversity gain

- Write channel matrix as

$$
\boldsymbol{H}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{V}^{H}
$$

- Excite channel with V_{i}, receive with U_{i}^{H}
- Received power is λ_{i}^{2}
- Full benefit only for uncorrelated contributions

- $n_{T} \cdot n_{R}$ diversity
- But: beamforming gain limited Upper bound: $\left.\left(n_{T}{ }^{1 / 2}+n_{R}\right)^{1 / 2}\right)^{2}$

MIMO SYSTMES WITHOUT CSI AT THE TRANSMITTER

Capacity formula

- Instantaneous channel characterized by matrix H
- Shannon's formula (for two-dimensional symbols):

$$
C=\log _{2}\left(1+\gamma|H|^{2}\right) \text { bits } / s / H z
$$

- Foschini's formula:

$$
C=\log _{2}\left(\operatorname{det}\left[\boldsymbol{I}_{n_{R}}+\frac{\gamma}{n_{T}} \boldsymbol{H} \boldsymbol{H}^{H}\right]\right) \text { bits } / s / H z
$$

Capacity for fading channel (I)

- Rayleigh fading channel.
- Capacity becomes random variable.
- Channel not known at transmitter.
- $\chi^{2}{ }_{2 k}$. random variable; chi-square with $2 k$ degrees of freedom
- Transmit diversity

$$
C=\log _{2}\left(1+(\gamma / n) \cdot \chi_{2 n}{ }^{2}\right)
$$

- Receive diversity

$$
C=\log _{2}\left(1+\gamma \cdot \chi_{2 n}{ }^{2}\right)
$$

- Comb. transmit/receive diversity: linear with n for fixed outage

$$
C>\sum_{k=1}^{n} \log _{2}\left[1+(\gamma / n) \chi_{2 k}{ }^{2}\right]
$$

- Spatial cycling

$$
C=\frac{1}{n} \sum_{k=1}^{n} \log _{2}\left[1+(\gamma) \chi_{2 k n}{ }^{2}\right]
$$

Capacity for fading channel (II)

$$
\gamma=21 \mathrm{~dB}
$$

Capacity with correlation

scatterers around MS, Gaussian in radius, variance $=100 \mathrm{~m}$ 8*8 antenna array

Measured capacities (LOS and NLOS)

Limited number of scatterers

Performance when one interferer dominates

Performance when two interferers dominate

Frequency-selective environments

- Channel gives more diversity
- Equalizers: very complicated
- OFDM:
- Subdivision into many frequency channels,
- Flat-fading MIMO system on each tone
- Efficient signal processing by using FFT
- But: coding across tones required to exploit frequency diversity

Capacity in frequency-selective channels

Frequency diversity leads to smaller capacity fluctuations

BLAST TRANSCEIVERS

Spatial Multiplexing (H-BLAST)

- Outer coding over T symbols (block length)
- Outer coding is independent for all streams \rightarrow no spatial diversity
- No coding over the streams - is sometimes also called "vector modulation"

$$
\mathbf{S}=\left[\begin{array}{llll}
s_{1} & s_{2} & s_{3} & s_{4}
\end{array}\right]^{T}
$$

H-BLAST - principle

Spatial Multiplexing (D-BLAST)

- Diagonal BLAST
- Modulation matrix for the example $n_{R}=n_{T}=Q=T=4$

$$
\boldsymbol{Y}=\boldsymbol{H} V P \boldsymbol{S}
$$

- Data streams are cycled through antennas
- Achieves spatial multiplexing gain (rate=4) and spatial diversity

SPACE-TIME CODING

Design rules for ST-coding

- Probability of picking wrong code symbol with ST-codes:

$$
\left(\prod_{i=1}^{r} \lambda_{i}\right)^{-n_{R}}\left[\frac{4 N_{0}}{E_{s}}\right]^{r n_{R}}
$$

r....rank of A
$\lambda \ldots$..eigenvalues of A

$$
A_{i k}=\sum_{t}\left(c_{i}(t)-c_{i}^{\prime}(t)\right)\left(c_{k}(t)-c_{k}{ }^{\prime}(t)\right)
$$

- Design rule:
- for achieving full diversity effect, A must have full rank diversity order not decreased by frequency selectivity
- for optimizing coding gain (with full diversity),

$$
\underbrace{\min }_{c_{i}, c_{k^{\prime}}}[\operatorname{det}(\boldsymbol{A})]
$$

must be maximized

Space Time Block Codes

- Example: Alamouti code ($n_{T}=Q=T=2$)

$$
\mathbf{S}_{\text {Alamoutii }}=\left[\begin{array}{cc}
s_{1} & -s_{2} \\
s_{2}^{*} & s_{1}^{*}
\end{array}\right] \quad \boldsymbol{Y}=\boldsymbol{H} \mathbb{V} P \mathbf{P}
$$

- Linear reception:

$$
\begin{aligned}
& \hat{s}_{1}=h_{1}^{*} r_{1}+h_{2} r_{2}^{*}+n_{1} \\
& \hat{s}_{2}=h_{2} r_{2}^{*}-h_{1}^{*} r_{1}+n_{2}
\end{aligned}
$$

- Two symbols are transmitted during two symbol periods (rate 1 no spatial multiplexing)
- Coding over the streams - achieves $2^{\text {nd }}$ order TX diversity
- Reaches capacity only for $n_{R}=1$

Chapter 21

GSM

Simplified system overview

Simplified block diagram

(Encryption not included in figure)

Some specification parameters

Frequency band:
(frequency duplex)
Channel spacing:
Modulation:
System data rate:
TDMA Frame:
Time slots:
Data rate (full-rate traffic channel): Speech coder:
Diversity:

890-915 MHz (uplink)
935-960 MHz (downlink)
200 kHz
GMSK
271 kb/s
4.6 ms
$8 \times 0.58 \mathrm{~ms}$
$22 \mathrm{~kb} / \mathrm{s}$
Regular Pulse Exited LPC-LTP 13 kb/s
Channel coding
Interleaving
Frequency hopping
Channel equalization

GMSK modulation

GMSK modulator (GMSK = Gaussian-filtered Minimum Shift Keying) MSK interpreted as QAM (Complex signal representation)

Power spectrum

TDMA/FDMA structure

TDMA/FDMA

ARFCN

Absolute Radio Frequency Channel Number channels spaced 200 kHz apart

Up/down-link time slots

Time slot index

Some of the time slots

Normal

3 start bits	58 data bits (encrypted)	26 training bits	58 data bits (encrypted)	3 stop bits	8.25 bits guard period

FCCH burst

3 start bits	142 zeros	3 stop bits	8.25 bits guard period

SCH burst

3 start bits	39 data bits (encrypted)	64 training bits	39 data bits (encrypted)	3 stop bits	8.25 bits guard period

RACH burst

8 start bits	41 synchronization bits	36 data bits (encrypted)	3 stop bits	68.25 bits extended guard period

Copyright: IEEE
FCCH Frequency Correction CHannel
SCH Synchronization CHannel
RACH Random Access CHannel

Frames and multiframes

Copyright: Hewlett Packard

Mapping of logical channels to physical channels

- Logical channels transmitted in different frames/superframes/...

Vocoder

Copyriaht: Wiley

Channel coding of speech

The speech code bits are in three categories, with different levels of protection against channel errors.

Interleaving and frequency hopping

- Bits interleaved over different frames

Frame number

- Optional: frequency hopping, so that each frames sees different channel and interference

Encryption

Viterbi equalizer

Example for handover

- Handover between BTSs controlled by same MSC but different BSCs

GPRS and EDGE

GSM has evolved into a high-speed packet radio system in two steps
GPRS General Packet Radio Services where empty time slots can be used

Up to $115 \mathrm{kbit} / \mathrm{sec}$ to transmit data packets.
Four new coding schemes are used (CS-1, ..., CS-4) with different levels of protection.

EDGE Enhanced Data-rate for GSM Evolution where, in addition to GPRS, a new 8PSK modulation is introduced.

$$
\text { Up to } 384 \mathrm{kbit} / \mathrm{sec}
$$

Eight new modulation and coding schemes are used (MCS-1, ..., MCS-8) with different levels of protection.

GPRS network

SGSN	Serving GPRS Support Node
GGSN	Gateway GPRS Support Node
ISP	Internet Service Provider

EDGE 8PSK modulation

Linear 8-PSK ... but with rotation of signal constellation for each symbol

We avoid transitions close to origin, thus getting a lower amplitude variation!

Chapter 22

IS-95 and CDMA 2000

Speech coding

- Original speech codec: IS-96A
- 8.6 kbit/s
- Bad speech quality
- Enhanced speech codec: CDG-13
- 13 kbit/s
- Code excited linear prediction (CELP) principle
- Much better speech quality
- Further enhancement: Enhanced Variable Rate Coder EVRC
- Uses fewer number of bits both during speech pauses and during active period
- 8.6 kbit/s

Spreading and modulation for uplink

long code

 sequence generator
Spreading and modulation for downlink

Logical channels (1)

- Traffic channels:
- for transmission of user data
- Depending on speech codec, use of rate set 1 or rate set 2
- Access channel:
- Only in uplink
- Allows MS that does not have current connection to transmit control messages: security messages, page response, origination, and registration

Logical channels (2)

- Pilot channel
- Synchronization channel
- Transmits system details that allow MS to synchronize itself to the networks
- Paging channel
- Power control subchannel
- Mapping of logical channels to physical channels:
- Assignment of different Walsh codes for different channels

Improvements in CDMA 2000

- Enhanced supplemental channels that can transmit data with higher rates
- Dedicated and common channels for packet data
- Walsh codes with variable length (OVSF codes)
- Faster power control for downlink
- Pilot for each uplink channel
- Enabling of smart antennas and transmit diversity

Chapter 23

Wideband Code-Division Multiple Access (WCDMA)

Third-generation systems

- IMT-2000 established by International Telecommunications Union
- 3GPP and 3GPP2 are two organizations developing standards for IMT-2000
- 3GPP allows several "modes"
- Wideband CDMA
\} UMTS
- C-TDMA
- DECT
- EDGE
- S-CDMA (China)
- Goals
- Higher spectral efficiency
- More flexibility, better suited for data transmission

UMTS simplified system overview

USIM:	User Service Identity Module
MT	Mobile Terminal
TA	Terminal Adapter
MT	Mobile Termination
IWU	Interworking Unit
UTRAN	UMTS Radio Access Network
UE	User equipment
CN	Core Network

WCDMA - some parameters

Carrier spacing	5 MHz
Chip rate	$3.84 \mathrm{Mchips} / \mathrm{sec}$
Uplink spreading factor	4 to 256
Downlink spreading factor	4 to 512

All cells use the same frequency band!

RF aspects

- Frequency bands

Spectrum mask

Frequency offset $\Delta \mathrm{f}$ from carrier (in MHz)

Mapping of logical to physical channels

- Some physical channels have no equivalent logical channel

Transport Channels	Physical Channels
DCH	Dedicated Physical Data Channel (DPDCH)
	Dedicated Physical Control Channel (DPDCH)
RACH	Physical Random Access Channel (PRACH)
CPCH	Physical Common Packet Channel (PCPCH)
	Common Pilot Channel (CPICH)
BCH	Primary Common Control Physical Channel (P-CCPCH)
FACH	Secondary Common Control Physical Channel (S-CCPCH)
PCH	
DSCH	Synchronisation Channel (SCH)
	Physical Downlink Shared Channel (PDSCH)
	Acquisition Indication Channel (AICH)
	Page Indication Channel (PICH)

Multiplexing

Copyright: 3GPP
a) uplink

b) downlink

Coding

- CRC added for error detection
- Convolutional codes:
- Rate $1 / 2$ for common channels
- Rate $1 / 3$ for dedicated channels
- Turbo codes
- Code rate $1 / 3$
- Mainly for high-data-rate applications

Channelization and scrambling

Orthogonal Variable Spreading Factor

The OVSF codes used for variable rate spreading can be viewed as a code tree.

We can create several orthogonal channels by picking spreading codes from different branches of the tree.

Downlink

Structure of downlink packet

Copyright: 3GPP

Uplink

Spreading/modulation for uplink dedicated physical channels

$c_{C}, c_{d} \quad$ Channelization codes (OVSF)
$c_{\text {scramb }}$
Primary scrambling code (256 chips) VL-KASAMI code (2 codes)
${ }^{c}{ }^{\text {scramb }}$
$p(t)$
Secondary scrambling code (10 ms optional) 2^{41}-1 Gold code (40960 chips)
Root-raised cosine pulse shaping, roll-off 0.22

Structure of uplink packet

Data rate and spreading factor

Spreading factor

Independent of data rate, we spread to the full bandwidth.

Transmit power and generated interference to others vary accordingly.

[^0]
Data rate and interference

In simple words, with a limited interference allowed, we can have many low data-rate channels or a few high data-rate channels.

Soft handover

Since all base stations used the same frequency band, a terminal close to the cell boundary can receive "the same" signal from more than one base station and increase the quality of the received signal.

Chapter 24

Wireless LANs IEEE 802.11

History

- Wireless LANs became of interest in late 1990s
- For laptops
- For desktops when costs for laying cables should be saved
- Two competing standards
- IEEE 802.11 and HIPERLAN
- IEEE standard now dominates the marketplace
- The IEEE 802.11 family of standards
- Original standard: 1 Mbit/s
- 802.11b (WiFi, widespread after 2001): 11 Mbit/s
- 802.11a (widespread after 2004): 54 Mbit/s
- 802.11e: new MAC with quality of service
- 802.11n: > $100 \mathrm{Mbit} / \mathrm{s}$

802.11a PHY layer

- Transceiver block diagram

802.11a PHY layer

- The following data rates are supported:

Data rate (Mbit/s)	Modulation	coding rate	coded bits per subcarrier	coded bits per OFDM symbol	data bits per OFDM symbol
6	BPSK	$1 / 2$	1	48	24
9	BPSK	$3 / 4$	1	48	36
12	QPSK	$1 / 2$	2	96	48
18	QPSK	$3 / 4$	2	96	72
24	16-QAM	$1 / 2$	4	192	96
36	16-QAM	$3 / 4$	4	288	144
48	64-QAM	$2 / 3$	6	288	192
54	64-QAM	$3 / 4$	6	216	

11a header and preamble

- Header conveys information about data rate, length of the data packet, and initialization of the scrambler

Copyright: IEEE

11a header and preamble

- PLCP preamble: for synchronization and channel estimation

Copyright: IEEE

802.11b air interface

- Key air interface parameters
- Frequency range: $5.40-2.48 \mathrm{GHz}$
- Carrier spacing: $20-25 \mathrm{MHz}$
- Data rates: 1, 2, 5.5, 11 Mbps
- Modulation and multiple access:
- for low data rates, as well as for header and preamble (1 Mbit/s):
- Direct-sequence spreading with Barker sequence
- Differential phase shift keying modulation
- For high data rates: complementary code keying (CCK)
- Multiple access by FDMA and packet radio access
- Channel coding:
- Convolutional coding with rate $1 / 2$ is option

Transceiver structure for 802.11b

Copyright: IEEE

Slides for "Wireless Communications" © Edfors, Molisch, Tufvesson

MAC and multiple access

- Frame structure:
- Contains payload data, address, and frame control into

- Multiple access: both contention-free and contention-based access

Copyright: IEEE

Contention-based access

- CSMA (carrier-sense multiple access):

Contention-free access

- Polling:

Further improvements

- 802.11e: improvements in the MAC; provides quality of service
- CSMA/CA-based Enhanced Distributed Channel Access (EDCA) manages medium access during CP.
- Polling-based HCF (Hybrid Coordination Function) Controlled Channel Access (HCCA) handles medium access during CFP.
- BlockACK and delayed blockACK reduce overhead
- Contention Free Burst (CFB) and Direct Link Protocol (DLP) improve channel efficiency.
- 802.11n: higher throughput by using multiple antenna elements

[^0]: Time

